Sunspots are temporary phenomena on the photosphere of the Sun that appear visibly as dark spots compared to surrounding regions. They are caused by intense magnetic activity, which inhibits convection by an effect comparable to the eddy current brake, forming areas of reduced surface temperature. They usually appear as pairs, with each sunspot having the opposite magnetic pole to the other.[1]
Although they are at temperatures of roughly 3000–4500 K (2700–4200 °C), the contrast with the surrounding material at about 5,780 K (5,500 °C) leaves them clearly visible as dark spots, as the luminous intensity of a heated black body (closely approximated by the photosphere) is a function of temperature to the fourth power. If the sunspot were isolated from the surrounding photosphere it would be brighter than the Moon. Sunspots expand and contract as they move across the surface of the Sun and can be as small as 16 kilometers and as large as 160,000 kilometers (100,000 mi) in diameter, making the larger ones visible from Earth without the aid of a telescope. They may also travel at relative speeds ("proper motions") of a few hundred meters per second when they first emerge onto the solar photosphere.
Manifesting intense magnetic activity, sunspots host secondary phenomena such as coronal loops (prominences) and reconnection events. Most solar flares and coronal mass ejections originate in magnetically active regions around visible sunspot groupings. Similar phenomena indirectly observed on stars are commonly called starspots and both light and dark spots have been measured.[6]
Sunspots: One interesting aspect of the Sun is its sunspots. Sunspots are areas where the magnetic field is about 2,500 times stronger than Earth's, much higher than anywhere else on the Sun. Because of the strong magnetic field, the magnetic pressure increases while the surrounding atmospheric pressure decreases. This in turn lowers the temperature relative to