Space-time coding is a technique that promises greatly improved performance in wireless communication systems by using multiple antennas at the transmitter and receiver. Space-Time Block Coding for Wireless Communications is an introduction to the theory of this technology. The authors develop the subject using a unified framework and cover a variety of topics ranging from information theory to performance analysis and state-of-the-art space-time block coding methods for both flat and frequency-selective fading multiple-antenna channels. They concentrate on key principles rather than specific practical applications, and present the material in a concise and accessible manner. Their treatment reviews the fundamental aspects of multiple-input, multiple-output communication theory, and guides the reader through a number of topics at the forefront of current research and development. The book includes homework exercises and is aimed at graduate students and researchers working on wireless communications, as well as practitioners in the wireless industry.
Space-Time Block Coding for Wireless Communications
Erik G. Larsson and Petre Stoica
CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521824569 © Cambridge University Press 2003 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2003 Reprinted with corrections 2005 This digitally printed version 2008 A catalogue record for this publication is available from the British Library ISBN
References: 279 [Yu and Ottersten, 2002] Yu, K. and Ottersten, B. (2002). Models for MIMO propagation channels: a review. Wireless communications and mobile computing, 2(7):653–666. [Yu et al., 2001] Yu, K., Bengtsson, M., Ottersten, B., McNamara, D., Karlsson, P., and Beach, M. (2001). Second order statistics of NLOS indoor MIMO channels based on 5.2 GHz measurements. In Proc. of IEEE Global Telecommunications Conference, volume 1, pages 156–160, San Antonio, TX. [Zangwill, 1967] Zangwill, W. I. (1967). Nonlinear Programming: A Unified Approach. Prentice-Hall, Inc., Englewood Cliffs, N.J. [Zetterberg, 1996] Zetterberg, P. (1996). Mobile cellular communications with base station antenna arrays: spectrum efficiency, algorithms and propagation models. PhD thesis, Royal Institute of Technology, Stockholm, Sweden. [Zhou and Giannakis, 2001] Zhou, S. and Giannakis, G. B. (2001). Space-time coding with maximum diversity gains over frequency-selective fading channels. IEEE Signal Processing Letters, 8(10):269–272. INDEX Alamouti code, 87, 103, 136 amicable orthogonal design, 102 beamforming, 62, 79 bit metric, 168 blind detection, 183 block transmission, 16 BPSK, 41 channel capacity, 25 ergodic, 28 informed, 27, 30 outage, 33 uninformed, 29, 30 Chernoff bound, 53, 242 coding advantage, 40 complex baseband representation, 235 concatenated codes, 167 constellation precoding, 122 cyclic preamble, 70 delay diversity, 93, 131 detection loss, 51 differential modulation, 190 diversity, 1 frequency-selective channels, 130 diversity gain, 40 entropy, 22 280 error probability average, 86 coherent detection, 42, 45 conditional, 84 estimated channel, 48 joint detection/estimation, 49 noncoherent detection, 48, 49 Euclidean distance, 46 fading, 10 feedback, 215 Fourier transform, 71 frequency offsets, 199 GSM, 2 Hurwitz-Radon family, 249 identifiability, 47 informed transmitter, 212 integer-constrained LS problem, 160 iterative nulling and cancelling, 163 MMSE, 162 sphere decoding, 164 zero-forcing, 162 interference, 187 multiuser, 223 joint ML detection/estimation, 169