Contents lists available at ScienceDirect
Journal of Luminescence journal homepage: www.elsevier.com/locate/jlumin
Spectroscopic and nano-molecular modeling investigation on the binary and ternary bindings of colchicine and lomefloxacin to Human serum albumin with the viewpoint of multi-drug therapy
J. Chamani a,n, A. Asoodeh b, M. Homayoni-Tabrizi a, Z. Amiri Tehranizadeh c, A. Baratian c, M.R. Saberi c, M. Gharanfoli d a Department of Biology, Faculty of Sciences, Islamic Azad University-Mashhad Branch, Mashhad, Iran Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran d Department of Development Biology, Culture and Science University, Tehran, Iran b c
a r t i c l e in f o
Article history: Received 21 April 2010 Received in revised form 14 August 2010 Accepted 18 August 2010 Available online 26 August 2010 Keywords: HSA Lomefloxacin Colchicine Spectroscopy Molecular dynamic
a b s t r a c t
Combination of several drugs is often necessary especially during long-term therapy. The competitive binding drugs can cause a decrease in the amount of drug bound to protein and increase the biological active fraction of the drug. The aim of this study is to analyze the interactions of Lomefloxacin (LMF) and Colchicine (COL) with human serum albumin (HSA) and to evaluate the mechanism of simultaneous binding of LMF and COL to protein. Fluorescence analysis was used to estimate the effect of drugs on the protein fluorescence and to define the binding and quenching properties of drugsHSA complexes. The binding sites for LMF and COL were identified in tertiary structure of HSA with the use of spectrofluorescence analysis. The analysis of fluorescence quenching of HSA in the binary and ternary systems show that LMF does not affect the complex formed between COL and HSA. On the contrary, COL