Blinded By the Light
Abstract: In this experiment we were provided a cereal box spectrometer to observe the emission lines of noble gases and hydrogen. Based on the scale readings on the spectrometer and the Balmer-Rydberg formula, their wavelengths and percent error were able to be extrapolated. Based on the literature values, the cereal box spectrometer proved its value as a decently accurate spectrometer.
Introduction: Every element and subsequent atom associated emits light; also know as electromagnetic radiation, when in an excited state. Analyzing this emitted light can give insight to the makeup and characteristics of them. The light given off by an energetically excited atom is not a continuous distribution of all possible wavelengths, but rather consists of a few wavelengths giving a series of discrete lines. Spectroscopy is the analysis of that emitted light and its dispersion into to it’s component wavelengths and colors. Niels Bohr explained the discrete spectrum of hydrogen by relating it to the electron. Normally the electron in the hydrogen atom is located in the first energy-level. When a hydrogen atom atoms gains energy, the electron moves from a lower energy-level to one of higher energy. The energy gained by the atom is exactly the amount of energy needed to move the electron from the lower energy-level to the higher energy-level. With its electron in a higher energy-level, the atom is now in an unstable, higher energy, excited state. The tendency is for electrons to occupy the lowest level available. So shortly after gaining the energy, the electron returns to a lower energy-level. Energy must be given up when this occurs, and the energy is lost as light. Each line in the emitted light of hydrogen represents the movement of an electron from a specific outer level to a specific inner one. We judge this emitted light against the electromagnetic spectrum with a spectrometer. A
References: Grossie, D. & Underwood K. (2011).Laboratory Guide for Chemistry. “Atomic Spectrometry”, Wright State University. Dayton, OH.