The speed at which light propagates through transparent materials, such as glass or air, is less than c. The ratio between c and the speed v at which light travels in a material is called the refractive index n of the material (n = c / v). For example, for visible light the refractive index of glass is typically around 1.5, meaning that light in glass travels at c / 1.5 ≈ 200,000 km/s; the refractive index of air for visible light is about 1.0003, so the speed of light in air is about 90 km/s slower than c.
In most practical cases, light can be thought of as moving instantaneously, but for long distances and very sensitive measurements the finite speed of light has noticeable effects. In communicating with distant space probes, it can take minutes to hours for the message to get from Earth to the spacecraft and back. The light we see from stars left them many years ago, allowing us to study the history of the universe by looking at distant objects. The finite speed of light also limits the theoretical maximum speed of computers, since