Today: Derivatives and integrals.
Review: Definitions and properties. Derivatives. Integrals.
Last class: Definitions and properties.
Domains restrictions and inverse trigs. Evaluating inverse trigs at simple values. Few identities for inverse trigs.
Review: Definitions and properties
Remark: On certain domains the trigonometric functions are invertible. y
1
y = sin(x)
y
1
y = cos(x)
y y = tan(x)
−π/2
π/2
x
0
π/2
π
−π/2
π/2
x
x
−1
−1
y
y = csc(x)
y
y = sec(x)
y
y = cot(x)
1 −π/2 0 −1 π/2
1
x
0 −1
π/2
π
x
0
π/2
π
x
Review: Definitions and properties
Remark: The graph of the inverse function is a reflection of the original function graph about the y = x axis. y π/2
y = arcsin(x)
y π y = arccos(x)
y π/2 y = arctan(x)
−1
1
x
π/2
x
−π/2
−π/2
−1
0
1
x y π
y π/2 y = arccsc(x)
y
y = arcsec(x) π y = arccot(x)
−1
0
1
x
π/2
π/2
−π/2 −1 0 1
x
0
x
Review: Definitions and properties
Theorem
For all x ∈ [−1, 1] the following identities hold, arccos(x) + arccos(−x) = π, arccos(x) + arcsin(x) = π . 2
Proof: y arccos(−x) 1 1 x = sin(π/2−θ) arccos(x) θ −x = cos (π−θ) π−θ θ x = cos (θ) π/2 − θ θ arccos(x)
y
arcsin(x)
x
x = cos (θ)
x
Review: Definitions and properties
Theorem
For all x ∈ [−1, 1] the following identities hold, arcsin(−x) = − arcsin(x), arctan(−x) = − arctan(x), arccsc(−x) = −arccsc(x).
Proof: y π/2
y = arcsin(x)
y π/2 y = arctan(x)
y π/2 y = arccsc(x)
−1
1
x
−π/2
x
−1
0
1
x
−π/2
−π/2
Inverse trigonometric functions (Sect. 7.6)
Today: Derivatives and integrals.
Review: Definitions and properties. Derivatives. Integrals.
Derivatives of inverse trigonometric functions
Remark: Derivatives inverse functions can be computed with