Suppose many network application processes can be running at the destination host. a. Design the simplest possible transport-layer protocol that will get application data to the desired process at the destination host. Assume the operating system in the destination host has assigned a 4-byte port number to each running application process. b. Modify this protocol so that it provides a “return address” to the destination process. c. In your protocols, does the transport layer “have to do anything” in the core of the computer network?
R2. Consider a planet where everyone belongs to a family of six, every family lives in its own house, each house has a unique address, and each person in a given house has a unique name. Suppose this planet has a mail service that delivers letters from source house to destination house. The mail service requires that (i) the letter be in an envelope and that (ii) the address of the destination house (and nothing more) be clearly written on the envelope. Sup- pose each family has a delegate family member who collects and distributes letters for the other family members. The letters do not necessarily provide any indication of the recipients of the letters. a. Using the solution to Problem R1 above as inspiration, describe a protocol that the delegates can use to deliver letters from a sending family member to a receiving family member. b. In your protocol, does the mail service ever have to open the envelope and examine the letter in order to provide its service?
R3. Consider a TCP connection between Host A and Host B. Suppose that