Preview

The Art of Computer Programming

Powerful Essays
Open Document
Open Document
40124 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
The Art of Computer Programming
This page intentionally left blank

[50] Develop computer programs for simplifying sums that involve binomial coefficients.

Exercise 1.2.6.63 in
The Art of Computer Programming, Volume 1: Fundamental Algorithms by Donald E. Knuth,
Addison Wesley, Reading, Massachusetts, 1968.

A=B

Marko Petkovˇek s Herbert S. Wilf

University of Ljubljana
Ljubljana, Slovenia

University of Pennsylvania
Philadelphia, PA, USA

Doron Zeilberger
Temple University
Philadelphia, PA, USA

April 27, 1997

ii

Contents
Foreword

vii

A Quick Start . . .

ix

I

1

Background

1 Proof Machines
1.1 Evolution of the province of human thought
1.2 Canonical and normal forms . . . . . . . . .
1.3 Polynomial identities . . . . . . . . . . . . .
1.4 Proofs by example? . . . . . . . . . . . . . .
1.5 Trigonometric identities . . . . . . . . . . .
1.6 Fibonacci identities . . . . . . . . . . . . . .
1.7 Symmetric function identities . . . . . . . .
1.8 Elliptic function identities . . . . . . . . . .
2 Tightening the Target
2.1 Introduction . . . . . . . . . . . . . . . .
2.2 Identities . . . . . . . . . . . . . . . . . .
2.3 Human and computer proofs; an example
2.4 A Mathematica session . . . . . . . . . .
2.5 A Maple session . . . . . . . . . . . . . .
2.6 Where we are and what happens next . .
2.7 Exercises . . . . . . . . . . . . . . . . . .
3 The
3.1
3.2
3.3
3.4

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

Hypergeometric Database
Introduction . . . . . . . . . . . . . . . . . . .
Hypergeometric series . . . . . . . . . . . . . .
How to identify a series as hypergeometric . .
Software that identifies hypergeometric series .

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.



Bibliography: Math. Phys. 11 (1971), 324–330. Transl. from Zh. vychisl. mat. mat. fiz. 29, 1611–1620. with polynomial coefficients, in: T. Levelt, ed., Proc. ISSAC ’95, ACM Press, New York, 1995, 285–289. linear operator equations, in: T. Levelt, ed., Proc. ISSAC ’95, ACM Press, New York, 1995, 290–296. and difference equations, in: J. von zur Gathen, ed., Proc. ISSAC ’94 , ACM Press, New York, 1994, 169–174. squares, Amer. Math. Monthly 100 (1993), 274–276. [Andr93] Andrews, George E., Pfaff’s method (I): The Mills-Robbins-Rumsey determinant, preprint, 1993. Winston, New York, 1961. [BeO78] Bender, E., and Orszag, S.A., Advanced Mathematical Methods for Scientists and Engineers, New York: McGraw-Hill, 1978. e LACIM, UQAM, Montr´al, 1991. Ian Stewart, Math. Intell. 15, #4 (Fall 1993), 71–73. [Buch76] Buchberger, Bruno, Theoretical basis for the reduction of polynomials to canonical form, SIGSAM Bulletin 39 (Aug. 1976), 19–24. r´arrangements, Lecture Notes Math. 85, Springer, Berlin, 1969. Ast´risque 206 (1992), 41–91, SMF. 17 (1970), 385–396. [Cipr89] Cipra, Barry, How the Grinch stole mathematics, Science 245 (August 11, 1989), 595. [Cohn65] Cohn, R. M., Difference Algebra, Interscience Publishers, New York, 1965. D. Reidel Publ. Co., Dordrecht-Holland, Transl. of Analyse Combinatoire, Tomes I et II , Presses Universitaires de France, Paris, 1974. [Daub92] Daubechies, Ingrid, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992. [Dixo03] Dixon, A. C., Summation of a certain series, Proc. London Math. Soc. (1) 35 (1903), 285–289.

You May Also Find These Documents Helpful

Related Topics