R. R. Dickerson*, S. Kondragunta, G. Stenchikov, K. L. Civerolo, B. G. Doddridge, B. N. Holben
ABSTRACT
Photochemical smog, or ground-level ozone, has been the most recalcitrant of air pollution problems, but reductions in emissions of sulfur and hydrocarbons may yield unanticipated benefits in air quality. While sulfate and some organic aerosol particles scatter solar radiation back into space and can cool Earth 's surface, they also change the actinic flux of ultraviolet (UV) radiation. Observations and numerical models show that UV-scattering particles in the boundary layer accelerate photochemical reactions and smog production, but UV-absorbing aerosols such as mineral dust and soot inhibit smog production. Results could have major implications for the control of air pollution.
ABSTRACT
Photochemical smog, or ground-level ozone, has been the most recalcitrant of air pollution problems, but reductions in emissions of sulfur and hydrocarbons may yield unanticipated benefits in air quality. While sulfate and some organic aerosol particles scatter solar radiation back into space and can cool Earth 's surface, they also change the actinic flux of ultraviolet (UV) radiation. Observations and numerical models show that UV-scattering particles in the boundary layer accelerate photochemical reactions and smog production, but UV-absorbing aerosols such as mineral dust and soot inhibit smog production. Results could have major implications for the control of air pollution.
More than 100 counties in the United States regularly violate the Environmental Protection Agency 's (EPA) Ambient Air Quality Standard for ozone (O3) of 120 ppbv (parts per 109 by volume averaged over 1 hour) (1). This ozone results from the interaction of pollutant oxides of nitrogen and nonmethane hydrocarbons (NMHCs) with solar radiation, for example, via reactions (1) to (4), and is thus sometimes called
References: 243, 745 (1989); National Academy of Sciences, Rethinking the Ozone Problem in Urban and Regional Air Pollution (National Academy of Sciences, Washington, DC, 1991); U.S Agency, National Air Quality and Emissions Trends Report, 1995 (EPA454/R-96-005, 1996); B (1997). The effect of aerosols on UV flux and photochemical ozone production near Earth’s surface has generally been assumed to be small and negative, Holmes, Environ. Sci. Technol. 11, 483 (1977); S. 18, 2265 (1991); Y. Lu and M. A. K. Khalil, Chemosphere 32, 739 (1996)]. Operation of many smog models, such as the Urban Airshed Models, is generally conducted without regard to the radiative effects of aerosols [U.S Agency, Guidelines for Regulatory Application of Urban Airshed Model (EPA-450/4-91-013, 1991); SAI, Users Guide to the Variable Grid Urban Airshed Model (UAM-V ) (Systems Applications International, San Rafael, CA, 1995); R Atmos. Phys. 49, 69 (1992)]. chemical actinometer. See, for example, J. Peterson and K. Demerjian, Atmos. Environ. 10, 459 (1976); J 87, 4933 (1982); T. Blackburn, S. Bairai, D. Stedman, ibid. 97, 10109 (1992); A. Ruggaber, R. Dlugi, T Blindauer, V. Rozanov, J. Burrows, ibid. 24, 1 (1996). 3. R. E. Shetter et al., J. Geophys. Res. 101, 14631 (1996) B. P. Briegleb, ibid. 260, 311 (1993); J. T. Houghton et al., Climate Change 1995: The Science of Climate Change (Cambridge Univ 5. C. Bruehl and P. J. Crutzen, Geophys. Res. Lett. 16, 703 (1989). 6. S. Madronich, J. Geophys. Res. 92, 9740 (1987). P. Kelley, R. Dickerson, W. Luke, and G. Kok [Geophys. Res. Lett. 22 (no. 19), 2621 (1995)]. Most natural surfaces (except snow) reflect 8% or less of 8. K. L. Civerolo, thesis, University of Maryland, College Park, MD (1996); W the sun) [Y. Kaufman et al., J. Geophys. Res. 99, 10341 (1994); T (1996); B. N. Holben et al., Sixth International Symposium of Physical Measurements and Signatures in Remote Sensing, Val D’Isere, France, 17 to 21 January 1994 (Center National d’Etudes Spatiales, Toulouse, France, 1997), pp Gasso, D. Hegg, Y. Kaufman, B. Holben, J. Geophys. Res., 102, 16849 (1997). 10. E. Flowers, R. McCormick, K. Kurfis, J. Appl. Meteorol. 8, 955 (1969); J. Peterson, E. Flowers, G. J. Berri, C. L. Reynolds, J. H. Rudisill, ibid. 20, 229 (1981); R W. E. Wilson, Atmos. Environ. 15, 1919 (1981); Y. Kaufman and R. S. Fraser, J. Appl. Meteorol. 22, 1694 (1983); R Sci. Technol. 27, 12 (1993). Seinfeld, Science 276, 96 (1997); Z. Meng, D. Dabdub, J. H. Seinfeld, ibid. 277, 116 (1997)]. 12. R. Fraser and Y. Kaufman, J. Geosci. Rem. Sens. 23, 525 (1985); Y Atmos. Sci. 43 (no. 11), 1135 (1986). 13. W. Wiscombe, Appl. Opt. 19, 1505 (1980). 14. K. Stamnes, S.-C. Tsay, W. Wiscombe, K. Jayaweera, Appl. Opt. 27 (no. 12), 2502 (1988).