Distributions
John Norstad j-norstad@northwestern.edu http://www.norstad.org
February 2, 1999
Updated: November 3, 2011
Abstract
The basic properties of the normal and lognormal distributions, with full proofs.
We assume familiarity with elementary probability theory and with college-level calculus. 1
1
DEFINITIONS AND SUMMARY OF THE PROPOSITIONS
1
Definitions and Summary of the Propositions
∞
√
Proposition 1:
−∞
2
2
1 e−(x−µ) /2σ dx = 1
2πσ
∞
x√
Proposition 2:
−∞
2
2
1 e−(x−µ) /2σ dx = µ
2πσ
∞
x2 √
Proposition 3:
−∞
2
2
1 e−(x−µ) /2σ dx = µ2 + σ 2
2πσ
Definition 1 The normal distribution N [µ, σ 2 ] is the probability distribution defined by the following density function:
√
2
2
1 e−(x−µ) /2σ
2πσ
Note that Proposition 1 verifies that this is a valid density function (its integral from −∞ to ∞ is 1).
Definition 2 The lognormal distribution LN [µ, σ 2 ] is the distribution of eX where X is N [µ, σ 2 ].
Proposition 4: If X is N [µ, σ 2 ] then E(X) = µ and Var(X) = σ 2 .
1
2
Proposition 5: If Y is LN [µ, σ 2 ] then E(Y ) = eµ+ 2 σ and
2
2
Var(Y ) = e2µ+σ (eσ − 1).
Proposition 6: If X is N [µ, σ 2 ] then aX + b is N [aµ + b, a2 σ 2 ].
2
2
Proposition 7: If X is N [µ1 , σ1 ], Y is N [µ2 , σ2 ], and X and Y are indepen2
2
dent, then X + Y is N [µ1 + µ2 , σ1 + σ2 ]. n Corollary 1:
2
If Xi are independent N [µ, σ ] for i = 1 . . . n then
Xi is i=1 N [nµ, nσ 2 ]. n Corollary 2:
2
If Yi are independent LN [µ, σ ] for i = 1 . . . n then
Yi is i=1 LN [nµ, nσ 2 ].
Proposition 8: The probability density function of LN [µ, σ 2 ] is:
2
2
1
√ e−(log(x)−µ) /2σ x 2πσ
2
2
PROOFS OF THE PROPOSITIONS
2
Proofs of the Propositions
Proposition 1
∞
√
−∞
2
2
1 e−(x−µ) /2σ dx = 1
2πσ
Proof:
First assume that µ = 0 and σ = 1. Let:
∞
a=
−∞
2
1
√ e−x /2 dx
2π
Then:
∞
a2