Scientists are finally beginning to understand one of life’s enduring mysteries - why women live, on average, longer than men.
The new research describes how mutations to the DNA of the mitochondria can account for differences in the life expectancy of males and females.
Mitochondria, which exist in almost all animal cells, are vital for life because they convert our food into the energy that powers the body.
Dr Damian Dowling and PhD student Florencia Camus, from Monash School of Biological Sciences in the U.S., worked with Dr David Clancy from Lancaster University to uncover differences in longevity and biological ageing across male and female fruit flies that carried mitochondria of different origins.
They found that genetic variation across these mitochondria were reliable predictors of life expectancy in males, but not in females.
Dr Dowling said the results point to numerous mutations within mitochondrial DNA that affect how long males live, and the speed at which they age.
He said: 'Intriguingly, these same mutations have no effects on patterns of ageing in females - they only affect males.
'All animals possess mitochondria, and the tendency for females to outlive males is common to many different species.
'Our results therefore suggest that the mitochondrial mutations we have uncovered will generally cause faster male ageing across the animal kingdom.'
The researchers said the mutations can be entirely attributed to a quirk in the way that mitochondrial genes are passed down from parents to offspring.
Dr Dowling said: 'While children receive copies of most of their genes from both their mothers and fathers, they only receive mitochondrial genes from their mothers.
'This means that evolution’s quality control process, known as natural selection, only screens the quality of mitochondrial genes in mothers.
'If a mitochondrial mutation occurs that harms fathers, but has no effect