AN INTRODUCTION TO REFRIGERATION
APPLICATION NOTE
BASIC REFRIGERATION PRINCIPLES If you were to place a hot cup of coffee on a table and leave it for a while, the heat in the coffee would be transferred to the materials in contact with the coffee, i.e. the cup, the table and the surrounding air. As the heat is transferred, the coffee in time cools. Using the same principle, refrigeration works by removing heat from a product and transferring that heat to the outside air.
REFRIGERATION SYSTEM COMPONENTS There are five basic components of a refrigeration system, these are: Evaporator Compressor Condenser Expansion Valve Refrigerant; to conduct the heat from the product In order for the refrigeration cycle to operate successfully each component must be present within the refrigeration system. The Evaporator The purpose of the evaporator is to remove unwanted heat from the product, via the liquid refrigerant. The liquid refrigerant contained within the evaporator is boiling at a low-pressure. The level of this pressure is determined by two factors: The rate at which the heat is absorbed from the product to the liquid refrigerant in the evaporator The rate at which the low-pressure vapour is removed from the evaporator by the compressor To enable the transfer of heat, the temperature of the liquid refrigerant must be lower than the temperature of the product being cooled. Once transferred, the liquid refrigerant is drawn from the evaporator by the compressor via the suction line. When leaving the evaporator coil the liquid refrigerant is in vapour form. The Compressor The purpose of the compressor is to draw the low-temperature, low-pressure vapour from the evaporator via the suction line. Once drawn, the vapour is compressed. When vapour is compressed it rises in temperature. Therefore, the compressor transforms the vapour from a low-temperature vapour to a high-temperature vapour, in turn increasing the pressure. The vapour is then