The presence of the San Andreas fault was brought dramatically to world attention on April 18, 1906, when sudden displacement along the fault produced the great San Francisco earthquake and fire. This earthquake, however, was but one of many that have resulted from episodic displacement along the fault throughout its life of about 15-20 million years.
What Is It?
Scientists have learned that the Earth's crust is fractured into a series of "plates" that have been moving very slowly over the Earth's surface for millions of years. Two of these moving plates meet in western California; the boundary between them is the San Andreas fault. The Pacific Plate (on the west) moves northwestward relative to the North American Plate (on the east), causing earthquakes along the fault. The San Andreas is the "master" fault of an intricate fault network that cuts through rocks of the California coastal region. The entire San Andreas fault system is more than 800 miles long and extends to depths of at least 10 miles within the Earth. In detail, the fault is a complex zone of crushed and broken rock from a few hundred feet to a mile wide. Many smaller faults branch from and join the San Andreas fault zone. Almost any road cut in the zone shows a myriad of small fractures, fault gouge (pulverized rock), and a few solid pieces of rock.
Where Is It?
The San Andreas fault forms a continuous narrow break in the Earth's crust that extends from northern California southward to Cajon Pass near San Bernardino. Southeastward from Cajon Pass several branching faults, including the San Jacinto and Banning faults, share the movement of the crustal plates. In this stretch of the fault zone, the name "San Andreas" generally is applied to the northeastern most branch.
What Surface Features Characterize It?
Over much of its length, a linear trough reveals the presence of the San Andreas fault; from the air, the linear arrangement of