This laboratory focused on the thermodynamic processes involved when two incompressible substances are mixed together. 12 experiments were performed, 10 involving the combination of a measured amount of hot and cold water and 2 involving the combination of ice and liquid water, the majority of these experiments were performed three times. The average variance in final temperature for each experiment was less than 10 percent providing proof of repeatability. Equipment used during the experiment included a gram scale, thermocouple, Styrofoam cup, glass beakers, microwave, an ice bath and ice. The first half of the experiment was dedicated to the mixing of two containers of water at different temperatures. The mass of the water in each container was measured and the containers were then heated or cooled to achieve the temperature desired for the experiment. The temperature was measured with a thermocouple before and after mixing. The data was recorded and is included in tables. The second half of the experiment involves the mixing of ice and liquid water. Water was weighed and cooled then mixed with an amount of ice that was also weighed. The temperature before and after mixing was recorded and included in tables. When the experiments were completed analysis was performed using the laws of thermodynamics. The data collected was used in equations to find theoretical values for final equilibrium temperature. The theoretical values were compared with those measured during the experiment. The total average percent difference between the measured final temperature and the theoretical final temperature is less than 5.0%. This low deflection between measurement and theory lends credibility to the experiment and proof of the concepts provided within the experiment.
INTRODUCTION
When two incompressible substances of different temperatures are combined, there will be a resultant equilibrium temperature that lies between the temperatures of the substances