1. Boundaries A discussion of the regions (or bands or types) of the electromagnetic spectrum is given below. Note that there are no precisely defined boundaries between the bands of the electromagnetic spectrum; rather they fade into each other like the bands in a rainbow (which is the sub-spectrum of visible light). Radiation of each frequency and wavelength (or in each band) will have a mixture of properties of two regions of the spectrum that bound it. For example, red light resembles infrared radiation in that it can excite and add energy to some chemical bonds and indeed must do so to power the chemical mechanisms responsible for photosynthesis and the working of the visual system.
Regions of the spectrum
The types of electromagnetic radiation are broadly classified into the following classes:[3] 1. Gamma radiation 2. X-ray radiation 3. Ultraviolet radiation 4. Visible radiation
Infrared radiation 5. Terahertz radiation 6. Microwave radiation 7. Radio waves
2. Microwaves
Main article: Microwaves
Plot of Earth's atmospheric transmittance (or opacity) to various wavelengths of electromagnetic radiation.
The super-high frequency (SHF) and extremely high frequency (EHF) of microwaves come after radio waves. Microwaves are waves that are typically short enough to employ tubular metal waveguides of reasonable diameter. Microwave energy is produced with klystron and magnetron tubes, and with solid state diodes such as Gunn and IMPATT devices. Microwaves are absorbed by molecules that have