Rheological characteristics of ground tire rubber-modified bitumens
F.J. Navarro, P. Partal∗ , F. Mart´nez-Boza, C. Valencia, C. Gallegos ı
Departamento de Ingenier´a Qu´mica, Universidad de Huelva, Escuela Politécnica Superior, Ctra. de Palos de la Frontera s/n, 21819 Huelva, Spain ı ı Accepted 4 February 2002
Abstract This work deals with the characterisation of the linear viscoelastic properties, closely related to its performance as road paving binder, of ambient ground tire rubber-modified bitumen. Specifically, the influence that rubber particle size exerts on the rheological properties of these binders has been studied. The resulting viscoelastic behaviour has been compared with that shown by unmodified and polymer-modified (SBS) bitumens. In total, an unmodified bitumen, five ground tire rubber-modified and three polymer-modified (SBS) bitumens have been studied. Rubber-modified bitumens show improved viscoelastic characteristics and, therefore, higher viscosity than unmodified binders. Consequently, enhanced resistance to permanent deformation or rutting and low-temperature cracking should be expected in ground tire rubber-modified bitumens. In addition, rubber-modified bitumen (9 wt.%) shows very similar linear viscoelastic properties to SBS-modified bitumen having 3 wt.% SBS at −10 ◦ C, and 7 wt.% SBS at 75 ◦ C. © 2002 Elsevier Science B.V. All rights reserved.
Keywords: Bitumen; Viscoelastic behaviour; Crumb rubber
1. Introduction Bitumen has been widely used as an adhesive material in pavement mixtures, surface dressing, bridge deck waterproofing, overlays and the protection of buildings, for example waterproofing roof and joint and crack seals. This is because asphalt is strong, readily adhesive, highly waterproof and durable [1]. In general, the components of bitumen can be broadly categorised as maltenes and asphaltenes. The viscoelastic properties of bitumen, and consequently its performance as a road paving
References: [1] D. Whiteoak, Shell Bitumen Handbook, Shell Bitumen UK, Riversdell Hause, Surrey, UK, 1990. [2] L.H. Lewandowski, Rubber Chem. Technol. 67 (1993) 447–480. [3] A. Adedeji, T. Grunfelder, F.S. Bates, C.W. Macosko, M. StroupGardiner, D.E. Newcomb, Polym. Eng. Sci. 36 (1996) 1707– 1723. [4] R. Dongré, J. Youtcheff, D. Anderson, Appl. Rheol. 6 (1996) 75–82. [5] G.N. King, H.W. King, O. Harders, P. Chaverot, J.P. Planche, Proc. Assn. Asph. Technol. 61 (1991) 29–66. [6] G.N. King, H.W. King, O. Harders, P. Chaverot, J.P. Planche, Proc. Assn. Asph. Pav. Technol. 62 (1993) 1–22. [7] J.H. Collins, M.G. Bouldin, R. Gelles, A. Berker, Proc. Assn. Asph. Pav. Technol. 60 (1991) 43–79. [8] X. Lu, U. Isacsson, Fuel 76 (1997) 1353–1359. [9] N. Akmal, A.M. Usmani, Polym. News 24 (1999) 136–140. [10] F.L. Roberts, P.S. Kandhal, E.R. Brown, R.L. Dunning, Florida Dep. Transp. Rep., Report No. 89, NCAT, 1989. [11] D.A. Anderson, D.W. Christensen, H.U. Bahia, R. Dongré, M.G. Sharma, C.E. Antle, J. Buttom, Strategic Highway Research Program, National Research Council, Washington, DC, 1994. [12] D. Lesueur, J. Gerard, P. Claudy, J. Letoffe, J. Rheol. 40 (1996) 813–836. [13] E. Sheu, O.C. Mullins (Eds.), Asphaltenes Fundamentals and Applications, Plenum Press, New York, 1995. [14] D. Mastrofini, M. Scarsella, Fuel 79 (2000) 1005–1015. [15] F. Mart´nez-Boza, P. Partal, F.J. Navarro, C. Gallegos, Rheol. Acta ı 40 (2001) 135–141. [16] A. Ait-Kadi, H. Brahimi, M. Bousmina, Polym. Eng. Sci. 36 (1996) 1724–1733. [17] U. Dutta, J. Mater. Civil Eng. 10 (1) (1998) 40. [18] U. Isacsson, H. Zeng, Mater. Struct. 31 (1998) 58–63. [19] U. Isacsson, X. Lu, Mater. Struct. 28 (1995) 139–159. [20] R. Ho, A. Adedeji, D.W. Giles, D.A. Hajduk, C.W. Macosko, F.S. Bates, J. Polym. Sci. B 35 (1997) 2857–2877. [21] Y. Lee, L.M. France, M.C. Hawley, Rubber Chem. Technol. 70 (1997) 256–263. [22] A.I. Isayev, S.P. Yushanow, S.H. Kim, V.Y. Levin, Rheol. Acta 35 (1996) 616–630. [23] T.C. Billiter, J.S. Chung, R.R. Davison, C.J. Glover, In. Bullin, Petroleum Sci. Technol. 15 (1997) 445–469. [24] W.B. Russel, D.A. Saville, W.R. Showalter, Colloidal Dispersions, Cambridge University Press, Cambridge, 1991. [25] A.B. Metzner, J. Rheol. 29 (1985) 739–775. [26] H. See, P. Jiang, N. Phan-Thien, Rheol. Acta 38 (2000) 131–137. [27] P.J. Carreau, Trans. Soc. Rheol. 16 (1972) 99. [28] T. Kitano, T. Kataoka, T. Shirota, Rheol. Acta 20 (1981) 207–209. [29] L.J. Lee, L.F. Marker, R.M. Griffith, Polym. Composites 2 (1981) 209–218. [30] S.A. Ramazani, A. Ait-Kadi, M. Grmela, J. Rheol. 45 (2001) 945– 962. [31] K. Alison, Rub. World 41 (March 1967); 91 (April 1967). [32] W.C. Vonk, L.A. Bull, Shell Chemicals Report No. 8, Shell, 1989, p. 17.