Today's network administrators must manage complex wide-area networks (WANs) in order to support the growing number of software applications that are built around Internet Protocol (IP) and the Web. These WANs place a great demand on network resources, and require high-performance networking technologies. WANs are complex environments that incorporate multiple media, multiple protocols, and inter-connection to other networks, such as the Internet. Growth and manageability of these network environments are achieved by the often complex interaction of protocols and features.
Despite improvements in equipment performance and media capabilities, WAN design is becoming more difficult. Carefully designing WANs can reduce problems associated with a growing networking environment. To design reliable, scalable WANs, network designers must keep in mind that each WAN has specific design requirements.
WAN Communication
WAN Design Requirements
WAN communication occurs between geographically separated areas. When a local end station wants to communicate with a remote end station (that is, an end station located at a different site), information must be sent over one or more WAN links. Routers within WANs are connection points of a network. These routers determine the most appropriate path through the network for the required data streams.
WAN communication is often called a service because the network provider normally charges users for the WAN services it provides. Circuit-switching and packet-switching technologies are two types of WAN services, each of which has advantages and disadvantages. For example, circuit-switched networks offer users dedicated bandwidth that cannot be infringed upon by other users. In contrast, packet switching is a method in which network devices share a single point-to-point link to transport packets from a source to a destination across a carrier network. Packet-switched networks have traditionally offered more