These two pyruvates oxidize to release CO2 as waste, and turn into acetyl-CoA. Each acetyl-CoA then goes through the Kreb’s cycle, with multiple reactions producing a net total of six NADH, two FADH2 [another coenzyme], two CO2, and two ATP. The NADH and FADH2 coenzymes then travel to the electron transport chain, where most of the ATP production begins. The NADH and FADH2 undergo redox reactions to send electrons through one member of the transport chain to another, which creates energy and causes H+ ions to be pumped out of the matrix. This ultimately produces an electrochemical gradient that causes H+ ions to flow back into the mitochondrial matrix through an enzyme called ATP synthase. This gives it the energy to allow it to pair an ADP with a phosphate to create ATP. At the end of this process, the electrons are transferred to oxygen [O2], which splits oxygen apart into two separate oxygen atoms to come together with hydrogen ions and create water as
These two pyruvates oxidize to release CO2 as waste, and turn into acetyl-CoA. Each acetyl-CoA then goes through the Kreb’s cycle, with multiple reactions producing a net total of six NADH, two FADH2 [another coenzyme], two CO2, and two ATP. The NADH and FADH2 coenzymes then travel to the electron transport chain, where most of the ATP production begins. The NADH and FADH2 undergo redox reactions to send electrons through one member of the transport chain to another, which creates energy and causes H+ ions to be pumped out of the matrix. This ultimately produces an electrochemical gradient that causes H+ ions to flow back into the mitochondrial matrix through an enzyme called ATP synthase. This gives it the energy to allow it to pair an ADP with a phosphate to create ATP. At the end of this process, the electrons are transferred to oxygen [O2], which splits oxygen apart into two separate oxygen atoms to come together with hydrogen ions and create water as