Offspring differ somewhat from their parents and from one another. Instructions for development are passed from parents to offspring in thousands of discrete genes, each of which is now known to be a segment of a molecule of DNA. This essay will explore some of the reasons behind how and why these differences in appearance arise, from the base sequence of DNA through to the observed phenotype.
Genes come in different varieties, called alleles. Somatic cells contain two alleles for every gene, with one allele provided by each parent of an organism. Genotype refers to the information contained in an organisms DNA, or genetic material. Its phenotype is the physical expression of its genotype. Although every creature is born with a fixed genotype, the phenotype is a variable influenced by many factors in the animal's environment and development. For example, two cows with identical genotypes could develop quite different phenotypes if raised in different environments and fed different foods.
The close association of environment with the expression of the genetic information makes animal breeding a challenging endeavor, because the physical traits a breeder desires to selectively breed for cannot always be attributed entirely to the animal's genes. Moreover, most traits are due not just to one or two genes, but to the complex interplay of many different genes.
DNA consists of a set of chromosomes; the number of chromosomes varies between species (humans, for example, have 46 chromosomes). Mammals (and indeed most creatures) have two copies of each chromosome in the DNA (this is called diploid). This means there are two copies of the same gene in an animal's DNA. Sometimes each of these will be partially expressed. For example, in a person having one copy of a gene that codes for normal hemoglobin and one coding for sickle-cell hemoglobin, about half of the hemoglobin will be normal and the other