The lemon battery is a simple type of electrical battery that is commonly made for school science projects because it illustrates a battery's main components. Typically, a piece of zinc metal and a piece of copper metal are inserted into a lemon. Everyday objects such as galvanized nails and copper pennies can be used for the zinc and for the copper. A single lemon is usually studied using an electrical meter. Several lemons can be wired together to form a more powerful battery that will power a light-emitting diode, a buzzer, or a digital clock.[1][2][3][4]
The lemon battery is similar to the first electrical battery invented in 1800 by Alessandro Volta, who used brine (salt water) instead of lemon juice.[5] The lemon battery is described in some textbooks in order to illustrate the type of chemical reaction (oxidation-reduction) that occurs in batteries.[6][7][8] The zinc and copper are called the electrodes, and the juice inside the lemon is called the electrolyte. There are many variations of the lemon cell that use different fruits (or liquids) as electrolytes and metals other than zinc and copper as electrodes.
Use in school projects[edit]
There are numerous sets of instructions for making lemon batteries and for obtaining components such as light-emitting diodes (LEDs), electrical meters (multimeters), and zinc-coated (galvanized) nails and screws.[2][3] Commercial "potato clock" science kits include electrodes and a low-voltage digital clock. After one cell is assembled, a multimeter can be used to measure the voltage or the electrical current from the voltaic cell; a typical voltage is 0.9 V with lemons. Currents are more variable, but range up to about 1 mA. For a more visible effect, lemon cells can be connected in series to power an LED (see illustration) or other devices. The series connection increases the voltage available to