A HIGH PERFORMANCE INDUCTION MOTOR DRIVE SYSTEM USING FUZZY LOGIC CONTROLLER
[pic]
VIGNAN’S ENGINEERING COLLEGE
VADLAMUDI
A HIGH PERFORMANCE INDUCTION MOTOR DRIVE SYSTEM USING FUZZY LOGIC CONTROLLER
ABSTRACT
Abstract- Basically, the motor drive system comprises a voltage source inverter-fed induction motor (VSIM): namely a three-phase voltage source inverter and the induction motor. The squirrel-cage induction motor voltage equations are based on an orthogonal d-q reference-rotating frame where the coordinates rotate with the controlled source frequency. The paper presents a novel fuzzy logic controller for high performance induction motor drive system. The inputs to the fuzzy logic controller are the linguistic variables of speed error and change of speed error, while the output is change in switching control frequency of the voltage source inverter. In this paper a comparison between fuzzy logic controller and traditional PI controllers are presented. The results validate the robustness and effectiveness of the proposed fuzzy logic controller for high performance of induction motor drive. Simulink software that comes along with MATLAB was used to simulate the proposed model.
I. INTRODUCTION
Simulink induction machine models are available in the literature [1-2], but they appear to be black boxes with no internal details. Some of them in [1-2] recommend using S functions, which are software source codes for Simulink blocks. This technique does not fully utilize the power and ease of Simulink because S-function programming knowledge is required to access the model variables. Another approach is using the Simulink Power System Block set [3] that can be purchased with Simulink. This block set also makes use of S-functions and is not as easy to work with as rest of the Simulink blocks. Reference [4] refers to an implementation approach similar to the ' one in this paper but fails to give any details. In this paper, a
References: [1] P. C. Krause, Analysis of Electric Machinery ,McGraw-Hill Book Company, 1986 f71L.A.Zadeh,"Outlineof a New Approach to the Analysis of Complex Systems and Decision Processes", IEEE Trans. Systems, Man, and Cybernetics,No.3, PP.28-44,1973. [2] N.T. M. Mohan Undeland and W.P.Robbins, "Power Electronics Converter, Applications and Design" john Wiley & Sons Inc. Canada, 1989. [3] L. Tang, M. F. Rahman, “A new direct torque control strategy for flux and torque ripple reduction for induction motors drive – a Matlab/Simulink model,” IEEE International Electric Machine and Drives Conference,2001,pp.884-890. [4] Bimal K. Bose,Modern Power Electronics and AC Drives, Prentice Hall, 2002. [5]. P. C. Krause, Analysis of Electric Machinary, McGraw-Hill Book Compeny,1986 ----------------------- [pic] [pic]