Abstract
The dehydration of cyclohexanol to cyclohexene can be done through fractional distillation. Once the fraction has been collected it must then be dried. The dried distillate is finally tested to determine whether or not it has been dehydrated. The three tests used were infrared spectroscopy, Bromine chemical test and Bayer’s chemical test. The infrared spectroscopy showed a large narrow peak at 3062.12(cm-1) and 3020.71(cm-1) which indicates that there is a double bond present. To assure the results were correct the chemical tests were done. The Bromine test was found to be positive for cyclohexene. The OH group was removed from the cyclohexanol and replaced with a double bond found around 3062.12(cm-1) and 3020.71(cm-1) and the dehydration was successful.
Introduction
Fractional distillation can be used when trying to dehydrate alcohols. Dehydrating an alcohol consists of taking away an OH group. Fractional distillation separates the initial compound into separate compounds; depending on what their boiling point is. Cyclohexanol can be dehydrated to form cyclohexene. Infrared spectroscopy is used to analyze a compound and can give a breakdown of what chemicals the original mixture is composed of. An example of this is the long broad peak around 3200 (cm-1) which signifies an OH group in the compound. This technique is very useful to help determine what a compound is made of and it can also be used with NMR to give a chemical structure. Since infrared spectroscopy can be used to analyze a compound it can also be used to verify that you have the correct compound. Another way to do this is to use a chemical test. There are multiple chemical tests that can be used, one of them being the bromine test. A bromine test is used to verify whether an OH group is present or not. Another test is used with KMNO4 to test whether and alkene is present or not. Using both chemical tests and infrared spectroscopy to analyze the substance it