INTRODUCTION
Enzymes are organic catalysts that spur metabolic reactions. The presence of an enzyme within a cell is essential in order for any sort of reaction to take place. All enzymes are complex proteins that act in an organism's closely controlled internal environment. In such a homeostatic environment, the temperature and the pH (concentration of hydrogen ions), remain within a fairly narrow range. Extreme variations in pH and temperature denature the enzyme by altering its chemical structure, thus adversely affecting the chemical reaction. As even the slightest change in the protein's structure will change the enzyme's shape enough to prevent the formation of the enzyme-substrate complex, the reaction will then be unable to take place. The enzyme, catalase, reacts with hydrogen peroxide in order to yield water and oxygen. Therefore, upon reaction, bubbling will occur as oxygen is produced. The amount of bubbling, or oxygen that is produced is dependent on the conditions under which the reaction takes place (or fails to).
Purpose The Purpose of this experiment was to determine the optimal temperature and pH levels under which enzymatic reactions involving the enzyme catalase and the reactant, hydrogen peroxide, may successfully occur.
Hypothesis It is hypothesized that because extreme variations in temperature and pH will negatively affect the reaction, mild temperatures and more neutral ph levels will yield the best results (most bubbles).
METHODS In order to conduct the tests on temperature and pH, 8 test tubes were used; five for temperature, and three for pH. Upon preparation for the tests, the three temperature test tubes were marked at the 1 cm and 5 cm levels, while the three pH test tubes were marked at the 1, 3, and 7 cm levels. To test for temperature, each tube was placed in a separate location with varying temperature: a refrigerator (5 degrees), an incubator (32