Introduction:
The micro mechanical device embedded with electronics/electrical system fabricated through a mix of integrated circuit manufacturing and micro-machining process where material is shaped by etching away micro layers is called Micro Electro Mechanical System (MEMS). The intelligent electronic system part is integrated in the same way of IC device fabrication. The most popular material used for MEMS is Silicon for it's semiconductor , physical and commercial properties.
Micro-Electro-Mechanical Systems consists of mechanical elements, sensors, actuators, and electrical and electronics devices on a common silicon substrate.
The sensors in MEMS gather information from the environment through measuring mechanical, thermal, biological, chemical, optical, and magnetic phenomena. The electronics then process the information derived from the sensors and through some decision making capability direct the actuators to respond by moving, positioning, regulating, pumping, and filtering, thereby controlling the environment for some desired outcome or purpose. The advantages of semiconductor IC manufacturing such as low cost mass production, reliability are also integral to MEMS devices.
The size of MEMS sub-components is in the range of 1 to 100 micrometers and the size of MEMS device itself measure in the range of 20 micrometers to a millimeter.
Some of the advantages of MEMS devices are,
1. Very small size, mass, volume
2. Very low power consumption
3. Low cost
4. Easy to integrate into systems or modify
5. Small thermal constant
6. Can be highly resistant to vibration, shock and radiation
7. Batch fabricated in large arrays
8. Improved thermal expansion tolerance
9. Parallelism
Typical Applications:
There are plenty of applications for MEMS. As a breakthrough technology, MEMS is building synergy between previously unrelated fields such as biology and microelectronics, many new MEMS and Nanotechnology