Microelectronic Fabrication
Lecture 1
January 11th, 2006
Brief overview of microelectronic fabrication •Dominant material: Silicon
•Technology size
•MOSFET fabrication
•Safety
Dominant material: Silicon
Obtaining ultrapure Si (other technology)
Robert F. Pierret, Semiconductor Device Fundamentals, p.17
Single-crystal formation
• Bridgmann method
• Czochralski method
USNA (lecture notes), http://www.usna.edu/EE/ee452/LectureNotes/05-Processing_Technology/15, 10/03/04
Dominant material: Silicon
Advantages of Si in fabrication
• Easily oxidized to form SiO2
• SiO2 acts as a “good” barrier layer
• Other barrier materials: Si3N4, photoresist, metals, etc
Technology size
Wafer size increases • Wafer must be thicker • Diminish the production cost • Yield is higher Richard C. Jaeger, Introduction to Microelectronic Fabrication, p.3
Technology roadmap
Reduce the size of devices
• Increase the number of devices per wafer UMC, http://www.umc.com.tw/english/process/a.asp
MOSFET fabrication
Metal-oxide-semiconductor field-effect transistor (MOSFET)
Technology size: Distance between drain
& source
Robert F. Pierret, Field Effect Devices, p.72
MOSFET fabrication
http://www.ecse.rpi.edu/~schubert/Course-ECSE-6290%20SDM-2/1%20MOSFET-2%20Fabrication.pdf
Top view
Field oxide
Source
Drain
Channel length Safety
Safety Issues
• Variety of acids and bases used for cleaning and etching
Can burn skin
Fumes can irritate eye
• Toxic or explosive gases
Ion implantation, LPCVD and epitaxial growth Understand toxicity & safe handling practices Remarks
Device physics:
ECSE-432
ECSE-533
Thermal Oxidation of Silicon
http://www.ecse.rpi.edu/~schubert/Course-ECSE-6290%20SDM-2/1%20MOSFET-2%20Fabrication.pdf
Discussed Topics
The Oxidation Process
Modeling Oxidation
Factors