Ohm’s law & resistors in parallel & in series
Lab 4
Class: PHY 1434-E475
Due date: March, 13 20144
Group Names: Hisham Sageer
Objectives:
Our object is to confirm Ohm’s law by analyzing the dependence of the electrical current as a function of voltage and as a function of resistance. Also, we studied the current flow and voltage in series and parallel. Finally, the lab determined the equivalence resistance of series and parallel combination of resistors and compared the results with theoretical data.
Theoretical Background:
The first thing that needs to be described in this lab is what the electric current I:
I =. The electric current is defined as charge over time and the unit is ampere (A). In a case where we have the voltage, resistance and current we can set the equation for resistance to be; R = where the unit is called Ohm (Ω). “The current through a resistor is directly proportional to the applied voltage V and inversely proportional to the resistance” (College Physics Laboratory Experiments, 43) in our lab experiment we used some machinery to produce and to measure voltage and some current. We were then able to find its resistance. These apparatus are called ammeter which displays the amount of current in circuit, and the voltmeter to read the voltage (potential difference). Reminding that this diagram is named circuit and V is applied across the ends of the metallic conductors.
The second part of our lab was dedicated to find the resistance in the resistors both in parallel and in series. The formula to find the resistance through series is fairly easy; it looks a lot like the formula in series for conductors. It’s basically RA+RB+RC = Req.
When it comes to find the total resistance when the resistors are in parallel we add the reciprocal of the combination of resistors. It will look like this; + + =
Procedure:
Part 1: Verification of Ohm’s Law
1 Investigate