Sarah Sulon
Biology Lab 111L
Dr. Murray
October 25 2010
Abstract
The experiment was conducted to determine the impact different sugar types have on yeast fermentation. It was hypothesized that glucose, sucrose and fructose would all produce energy through yeast fermentation, but that sucrose would have the greatest rate of energy production. The carbon dioxide production was tracked in the fermentation of yeast with solution of no sugar, glucose, fructose, and sucrose over a period of twenty minutes. All of the sugars produced energy, but glucose was the most efficient of the three, even producing energy at three times the rate of fructose. This difference in efficiency is a result of the various pathways the sugars must take to enter glycolysis. Glucose could enter directly while sucrose had to be broken down and fructose required modification to enter as an intermediate.
Introduction Respiration makes up a cell’s metabolic process where carbohydrates are converted into energy to be used by the cell. Cellular respiration can take one of two pathways; aerobic or anaerobic respiration. Anaerobic respiration occurs in the absence of oxygen. This pathway produces much less oxygen than aerobic respiration because only glycolysis occurs. The Krebs cycle and the electron transport chain are blocked since oxygen is not present to accept the electrons at the end. In anaerobic respiration, glycolysis is followed by a side reaction to regenerate the NAD+ used to accept electrons from the carbohydrate. In animals, this reaction is lactic acid fermentation while in plants and fungi, ethanol fermentation occurs. These methods are far less efficient than aerobic respiration (Cellular, 54).
Ethanol fermentation begins after glucose has been converted into two pyruvates during glycolysis. This pyruvate then is broken into acetylealdehyde and a carbon is released in the