solute is on either side of the membrane. The diffusion of glucose‚ starch‚ and iodine was observed when the solutes went from a higher concentration of their individual solute to a lower concentration diffusing threw pores in the dialysis bag. The experiment sought to find out which solutes would diffuse threw the pores of the dialysis bag‚ whether in or out of the bag. The pores and walls of the dialysis bag acted as a permeable membrane‚ like the one found in cells‚ and was the regulator of diffusion
Premium Molecular diffusion Cell membrane Protein
Fermentation Lab Report Introduction: Fermentation‚ a type of anaerobic respiration that breaks down glucose into ethanol and carbon dioxide without the use of oxygen‚ is extremely vital in food processing. Especially useful in the making of bread and wine is yeast‚ a single-celled fungus. The rate of fermentation of these products can be done by measuring the amount of carbon dioxide produced by the work of the yeast. The specific variable we tested was the volume of fructose in each vial solution
Premium Carbon dioxide Enzyme Yeast
In bio lab‚ my lab partners and I did a lab experiment involving yeast fermentation. Fermentation is an anaerobic process to regenerate NAD+ to keep glycolysis active. Yeast preforms ethanol fermentation which create ethanol and NAD+. The class used six different types of sugars to determine which fuels fermentation by measuring the amount the carbon dioxide bubbles produced by the yeast. Yeast are single-cell fungi that cannot make their own food. They take the sugars in the surrounding environment
Premium Glucose Carbon dioxide Yeast
This laboratory allowed for an establishment of different rates in which yeast is tested with anaerobic conditions and the amount of time it would take to get to the result of fermentation with different sugars. This fermentation rate was calculated with water displacement using pipettes to discover the span of time before the release of air bubbles known as Carbon Dioxide. Sucrose had the highest fermentation rate in comparison to all of the other sugars that were tested. The results confirm the
Premium Glucose Carbon dioxide Metabolism
of this experiment is to better understand the process of fermentation of yeast in different concentrations of sucrose. The experiment worked with yeast and sugar (sucrose and glucose) to determine the rate of fermentation by testing the pressure of C02 in the test tube. The experiment tested the metabolic capability of yeast anaerobically meaning no oxygen was present (this was ensured by the thin layer of oil on the top of the solution). This means that the metabolic rate of the yeast could be
Premium Enzyme Carbon dioxide Glucose
Introduction The purpose of this experiment is to determine the effect that temperature has on the growth and respiration of yeast fermentation. The growth and respiration of the yeast can be determined by using a glucose/ yeast solution mixed with water in flasks set at different temperatures. Yeast in order to produce‚ has to make energy‚ to carry out all cellular functions (Spicer‚ & Holbrook‚ 2007). The concept that aerobic metabolism of all yeasts‚ is determined by the relative sizes of the
Premium Yeast Carbon dioxide Fahrenheit
Effects of Molasses Concentration on Yeast Fermentation The purpose of this lab was to determine how yeast cells are affected by the concentration of a food source‚ and for our purposes‚ the food sources were corn syrup and molasses. Our hypothesis was that the yeast cells would ferment the most when there was a higher concentration of molasses/corn syrup. In order to test this‚ we created 10 test tubes with decreasing concentrations of molasses/corn syrup using a serial dilution. Each test
Premium Yeast Metabolism Fermentation
FlowCAM® Application Note #105 Yeast Viability Measurements in Fermentation Studies Objective An important component of fermentation processes is to continually monitor yeast growth and viability. The most common method for doing this is using the ASBC hemocytometer count method. In this method‚ samples are taken from the fermentation vessel‚ stained with methylene blue‚ and then counted manually under a microscope using a hemocytometer. While this method is well known and documented
Premium Yeast
Report Investigating Alcoholic Fermentation and the Affects of Yeast on Dough Aim: The aim was simply to investigate whether or not yeast had any affect on causing dough to rise when baked and to experiment with alcoholic fermentation eg. to see if it gave off carbon dioxide. Introduction: Following a few weeks of fermentation theory‚ groups of three to four were assigned and told to conduct a series of experiments involving the affects of fermentation. My group consisted of myself‚ Won
Premium DNA Gene Molecular biology
Glycolysis Two stage process Stage 1 – trapping and destabilising glucose in order to produce 2x3c molecules (5steps in the process). Requires energy (2 ATPs) Stage 2 – oxidation of the 3c molecules to pyruvate (5steps in the process). Energy generated (4tps and 2 NADH) Stage 1 Step 1 – trapping glucose‚ glucose enters via facilitated diffusion through specific transport proteins. The family of transporters is known as GLUT‚ GLUT 3 (brain‚ nerve tissue) Low Km allows relatively constant rate
Premium Adenosine triphosphate Glycolysis Cellular respiration