Lab: investigating hooked law with springs Purpose: to find spring constants of different springs using the slope of a graph of change in heights vs. the weight force. Also‚ to be able to understand how spring constants change when you add springs in a series or paralle Pre lab predictions: We predicted that the graph of gravitational force (mg) as a function of stretch (delta x) would look like Data: Spring #1: y = 8.2941x + 0.0685 This table represents the different distances that
Premium Mass Force Weight
soil from the site and then take several other samples from different points on the site. This ensures variety of soil to ensure that all the site is safe‚ not just a small area where you would have taken your first sample from. I will return to the lab with the samples of soil I have extracted from the site. Here I will make a solution from the samples in order to carry out the identification tests. In order to turn my soil samples
Premium Water Chemistry Soil
THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS Copyright © 2002 by The American Society for Pharmacology and Experimental Therapeutics JPET 303:534–539‚ 2002 Vol. 303‚ No. 2 37580/1014526 Printed in U.S.A. Interactions of Human Organic Anion Transporters and Human Organic Cation Transporters with Nonsteroidal AntiInflammatory Drugs SUPARAT KHAMDANG‚ MICHIO TAKEDA‚ RIE NOSHIRO‚ SHINICHI NARIKAWA‚ ATSUSHI ENOMOTO‚ NAOHIKO ANZAI‚ PAWINEE PIYACHATURAWAT‚ and HITOSHI ENDOU Department of Pharmacology
Premium Ibuprofen Paracetamol
of the specialized underlying structures of these life-forms. In order for us to appreciate these special adaptation‚ we first need to know how a typical plant or an animal cell organelle behaves in different water and solute concentrations. In this lab‚ we will determine the effects of hypertonic‚ isotonic and hypotonic solutions on plant and animal cells. In general when an animals cell’s placed in hypertonic solution it shrivels; a plant cell on the other hand undergoes plasmolysis. When an animal
Premium Eukaryote Photosynthesis Cell
Toxicology Lab 1. In this investigation‚ a wide range of concentrations of Sodium Chloride (NaCl) solution were created and the effects that they had on radish seeds were tested. This ultimately created a doseresponse experiment in which it was detectable whether or not radish seeds were a reliable bioassay for the toxicity of NaCl. The goal of this experiment was to determine a correlation between toxicity and seed germination/radicle
Premium Germination Seed Embryo
Lab 5 The Diffraction Grating Chinua McDonald Objective: To measure the wavelength of light with a diffraction grating. Theory: The two types of diffraction gratings are the transmission and reflection gratings. They are made by ruling on a piece of glass or metal a number of evenly spaced lines with a fine diamond point. Diffraction phenomena can be analyzed in terms of Huygens’ principle‚ according to which every point on the wave front of a wave should be considered as a source
Premium Light Diffraction Wavelength
indicated by a very pale pink color. To calculate the molarity of NaOH‚ the following equation was used MNaOH x VNaOH = MKHP x VKHP therefore the molarity was .125 M. INTRODUCTION This lab experiment covers the preparation of standard solution and the acid/base titration. The first part of the lab is to prepare a standard solution of Potassium hydrogen per. A standard solution is a solution of known concentration‚ in which it is prepared using exacting techniques to make sure that the molarity
Premium Sodium hydroxide Titration
of Oxalate Ion in Ferric Oxalate Trihydrate using Titrimetry Abstract: In this two-part lab‚ we will learn about coordination compounds and their uses with stoiciometry. We will also find out about how theoretical yield is calculated from a reaction we will create. We will also synthesize Potassium Ferric Oxalate Trihydrate (K_3 [〖Fe(C_2 O_4)〗_3]•3H_2 O) using a two step reaction. In the second part of this lab we will calculate how much Oxalate Ion is present in the K_3 [〖Fe(C_2 O_4)〗_3]•3H_2 O using
Premium Iron Hydrogen Nitrogen
Moment of Inertia and Rotational Motion Garret Hebert PHY 2311 Tues 1:00 garret.hebert@hindscc.edu Abstract: During this lab we will study what rotational Inertia is and how different shapes of masses and different masses behave inertially when compared to each other. We will specifically study the differences of inertia between a disk and a ring. We will use increasing forces to induce angular acceleration of both a disk and a ring of a certain mass. We will then then measure the differences
Premium Classical mechanics Inertia Torque
Example lab report of Synthesis of potassium tris (oxalato) ferrate (III) trihydrate Posted by Nurul Yunaliyana Experiment 5: Synthesis of potassium tris (oxalato) ferrate (III) trihydrate Purpose: to synthesis potassium tris (oxalato) ferrate (III) trihydrate ‚K3 [Fe (C2O4)3].3H2O. Introduction: Ferrous ammonium sulfate‚ Fe(NH4)2(SO4)2.6H2O is dissolved in a slightly acid solution‚ excess oxalic acid‚ H2C2O4‚ is added and the following reaction takes place: Fe(NH4)2(SO4)2.6H2O + H2C3O4
Premium Chemistry Iron Ammonia