Lab report SHEAR FORCE & BENDING MOMENT Bachelor (Hons) of Civil Engineering Course: Structures l (ECS3213) Lecturer: Ir Pan Submission date: 07-11-2013 Group 8: Members No. Name Student ID 1 Diallo Mamadou Aliou SCM-014804 2 Balmeiiz Abilkhaiyrova SCM-014742 3 Elmogdad Merghani Mohamed Elhag SCM-017223 4 Omar Mohamed Abdelgawwad SCM- 018031 5 Salah Mohammed Alesaei SCM-015473 6 Ali Abdulrahman Mohammed SCM-008879 7 Kasem Heiazi SCM-017913 Contents A. Introduction: 3 B. Objectives:
Premium Force Beam Shear stress
BEAM DESIGN FORMULAS WITH SHEAR AND MOMENT DIAGRAMS 2005 EDITION ANSI/AF&PA NDS-2005 Approval Date: JANUARY 6‚ 2005 ASD/LRFD N DS ® NATIONAL DESIGN SPECIFICATION® FOR WOOD CONSTRUCTION WITH COMMENTARY AND SUPPLEMENT: DESIGN VALUES FOR WOOD CONSTRUCTION American Forest & Paper Association x w Wood American Wood Council American Wood Council R R 2 2 V Shear V Mmax Moment American Forest & DESIGN AID No. 6 DESIGN Paper Association
Premium Beam Torque Wood
MEM23061A Test Mechanical Engineering Materials Lab. BEAM BENDING The bending of beams is one of the most important types of stress in engineering. Bending is more likely to be a critical stress than other types of stress - like tension‚ compression etc. In this laboratory‚ we will be determining the Modulus of Elasticity E (also called Young’s Modulus) of the various materials and using Solid Edge to determine the Second Moment of Area for the different cross-sections. [pic] Equations
Premium Beam Elasticity
Bending of a Beam Senior Freshman Engineering Laboratories Lab: 2E4A Coordinator: Asst. Prof. Bidisha Ghosh Demonstrator: Concept A transverse load is applied to a beam. The beam changes its shape and experiences bending moment. Internal stresses (bending stress) develop in the beam. In the bent or curved shape‚ the material on the inside of the curve experiences compression and material on the outside of the curve experiences tension. In pure bending‚ the transverse planes in the material
Premium Beam Bending Elasticity
Abstract: On this project we will try to design an ( I ) construction beam and find lightest weight material that can be used as an construction beam ‚ currently we are taking strength of material course that helping us to learn more about construction beam’s design ‚ we will be going over types of beams ‚ types of loads and beams design ‚ on our own we will research about the materials of beams and try to find the lightest beam’s material that we can use in construction according
Premium Structural engineering Beam Reinforced concrete
Equilibrium - BEAM Objective 1. To study the vertical equilibrium of (a) a simply supported beam 2. To determine the reactions of the beams by (a) the experimental set-up and (b) by using the principles of statics and method of consistent deformation Apparatus TecQuipment SM 104 Beam Apparatus Mk III Figure 1 Experimental Procedures 1. Set up the beam AC with a span of 675mm (as shown in Figure 1). 2. Place two hangers equidistant (100mm) from the mid-point of the beam. 3. Unlock
Premium Force
What factors affect the bending of bridges? Abstract: This experiment was designed and conducted to find out how different factors affect the amount of bending of the beam. The two variables that were tested were the amounts of weight and the position of the weight on the plank. Aim: To find out how weight and different placements of the weight affect the bending of the beam. Hypothesis: It is predicted that the wood will bend more if there is more weight on it. When the weight is positioned
Premium Bridge Bridges
On the Large Deflections of a Class of Cantilever Beams Moses Frank Oduori‚ Ph.D.‚ Department of Mechanical and Manufacturing Engineering‚ The University of Nairobi. Abstract An equation for the determination of large deflections of beams is derived from first principles. Laboratory tests were carried out in order to validate the theory. The theoretical and experimental results were found to be in good agreement. Introduction In much of the study and practice of mechanical and structural
Premium Beam Cantilever Mechanical engineering
Three: Parallam Beam Deflection Lab Group - 1st Mondays‚ Late: Jesse Bertrand‚ Ryan Carmichael‚ Anne Krikorian‚ Noah Marks‚ Ann Murray Report by Ryan Carmichael and Anne Krikorian E6 Laboratory Report – Submitted 12 May 2008 Department of Engineering‚ Swarthmore College Abstract: In this laboratory‚ we determined six different values for the Elastic Flexural Modulus of a 4-by10 (100” x 3.50” x 9.46”) Parallam wood-composite test beam. To accomplish this‚ we loaded the beam at 1/3 span with
Premium Beam Vermiform appendix Cantilever
stiffness of two cantilevered beams composed of steel and aluminum while maintaining both beams at a constant thickness and cross sectional area. The experiment also investigated material properties and dimensions and their relationship to structural stiffness. The experiment was divided into two separate parts. The results for the first part of the experiment were obtained by clamping the beam at one end while applying different masses at a specified length across the beam and then measuring deflection
Premium Cantilever Elasticity Beam