5645 | 3.17 | 32.11 | 2010 | 4284 | 3.28 | 31.23 | 2011 | 3674 | 2.65 | 24.16 | Using regression analysis we want to determine the relationship between ROA‚ ROE and stock price of PT BCA Tbk. In this case‚ ROA and ROE are the independent or explanatory variable (X)‚ while stock price is the dependent variable that we want to explain (Y). Regression Analysis SUMMARY OUTPUT | | | Regression Statistics | Multiple R | 0.13028475 | R Square | 0.016974116 | Adjusted R Square | -0
Premium Statistics Theory Explanation
Classical Multiple Linear Regression Model 2 Chapter 3 Least Squares 3 Chapter 4 Finite-Sample Properties of the Least Squares Estimator 7 Chapter 5 Large-Sample Properties of the Least Squares and Instrumental Variables Estimators 14 Chapter 6 Inference and Prediction 19 Chapter 7 Functional Form and Structural Change 23 Chapter 8 Specification Analysis and Model Selection 30 Chapter 9 Nonlinear Regression Models 32 Chapter 10 Nonspherical Disturbances - The Generalized Regression Model 37 Chapter 11
Premium Regression analysis Variance Linear regression
Project 1: Linear Correlation and Regression Analysis Gross Revenue and TV advertising: Pfizer Inc‚ along with other pharmaceutical companies‚ has begun investing more promotion dollars into television advertising. Data collected over a two year period‚ shows the amount of money Pfizer spent on television advertising and the revenue generated‚ all on a monthly bases. |Month |TV advertising |Gross Revenue | |1 |17 |4.1 | |2
Premium Regression analysis Forecasting Linear regression
1. You are about to test the hypothesis that sales of your product will increase at a very similar rate at either a $5 drop in unit price or a $7 drop in unit price. You are involved in what type of research? (Points : 2) exploratory descriptive causal focus group ethnographic 2. Of the following combinations‚ managers would be most likely to start with ________ research and later follow with ________ research. (Points : 2) exploratory;
Premium Marketing Management Answer
Simple Linear Regression Model 1. The following data represent the number of flash drives sold per day at a local computer shop and their prices. | Price (x) | Units Sold (y) | | $34 | 3 | | 36 | 4 | | 32 | 6 | | 35 | 5 | | 30 | 9 | | 38 | 2 | | 40 | 1 | | a. Develop as scatter diagram for these data. b. What does the scatter diagram indicate about the relationship between the two variables? c. Develop the estimated regression equation and explain what the
Premium Regression analysis
these characteristics and modeled the relationship between them and the price of real estate for a specific area. How are these characteristics used in determining the price? A model that is commonly used in real estate appraisal is the hedonic regression. This method is specific to breaking down items that are not homogenous commodities‚ to estimate value of its characteristics and ultimately determine a price based on the consumers’ willingness to pay. The approach in estimating the values is done
Premium Real estate
TECHNOLOGY AND INNOVATION Degree Level 1 Quantitative Skills Correlation & Regression Intake : Lecturer : Date Assigned : Date Due : 1. Suppose that a random sample of five families had the following annual income and savings. Income (X) Savings (Y) (£’000) (£’000) 8 0.6 11 1.3 9 1.0 6 0.7 5 0.3 (a) Obtain the least square regression equation of savings (Y) on income (X) and plot the regression line on a graph. (b) Estimate the savings if the family income is
Premium Spearman's rank correlation coefficient
in the United States Question 1. Estimate the demand for soft drinks using a multiple regression program available on your computer. 2. Interpret the coefficients and calculate the price elasticity of soft drink demand 3. Omit price from the regression equation and observe the bias introduced into the parameter estimate for income. 4. Now omit both price and temperature from the regression equation. Should a marketing plan for soft drinks be designed that relocates most canned drink
Premium Supply and demand Linear regression Statistics
| 70 | 29 | E | 22 | 6 | F | 27 | 15 | G | 28 | 17 | H | 47 | 20 | I | 14 | 12 | J | 68 | 29 | | | | | | | a) draw a scatter diagram of number of sales calls and number of units sold b) Estimate a simple linear regression model to explain the relationship between number of sales calls and number of units sold y=2.139x-1.760 Number of units sold=2.139Number of units sold-1.760 c) Calculate and interpret the coefficient of correlation r=0.853=0.9236 (There
Premium Statistics Regression analysis Normal distribution
relationship between CREDIT BALANCE and SIZE 2591+ 403.221 Determine the coefficient of correlation. Interpret. .75/ r-sq(56.6%). There is a mild correlation. Determine the coefficient of determination. Interpret. 56.6% Test the utility of this regression model (use a two tail test with α =.05). Interpret your results‚ including the p-value. P-value=0. Reject the null hpothesis. T value 7.9147 Based on your findings in 1-5‚ what is your opinion about using SIZE to predict CREDIT BALANCE? Size
Premium Regression analysis Statistics