Chemical Reaction of copper compounds Introduction: In this experiment‚ the objective was to conduct a series of chemical reactions that contain copper or copper compounds. That is to say that the products of each chemical reaction were used in the next reaction. The process starts with a solid copper wire dissolved in nitric acid and the end product is copper powder. The product which was used from the previous reaction is the limiting. In the initial step‚ the solid copper is the limiting reactant
Premium Chlorine Copper Water
of the reaction: The effect of the temperature of the reaction on the activity of the purified enzyme was carried out by make the enzymatic reaction for 10 minutes at different temperature 25‚30‚35‚40‚45‚50‚60 and 70°C using an enzyme protein 0.1mg/reaction mixture and substrate concentration of 15 mg/reaction mixture‚ using a control of previously heated enzyme solution in the reaction. The data recorded in (table 27) and (figure 29) illustrate the effect of temperature of the reaction on the pectinase
Premium
98.) Consider the unbalanced redox reaction: Cr2O72- (aq ) + Cu(s ) → Cr3+ (aq ) + Cu2+ Balance the equation in acidic solution and determine how much of a 0.850 M K2Cr2O7 solution is required to completely dissolve 5.25 g of Cu. Nitric acid is usually purchased in concentrated form with a 70.3% HNO3 concentration by mass and a density of 1.41 g/mL. How much of the concentrated stock solution in milliliters should you use to make 2.5 L of 0.500 M HNO3? Mass %= Mass Solute/ Mass Solvent + Mass
Premium Chemistry Solubility Hydrogen
The SN2 reaction requires three qualities: a strong nucleophile‚ a good‚ unhindered leaving group‚ and a polar‚ aprotic solvent. For our reaction‚ we have all three bases covered. The nucleophile is an alkoxide‚ a deprotonated alcohol. Technically‚ because our alcohol is a phenol‚ the conjugate base is called a phenoxide. Phenol itself has a pKa of about 10‚ but our alcohol has more resonance opportunities‚ so the pKa is down around 8. This is sufficiently acidic for use of weak base like K2CO3 for
Premium Nucleophile
Grignard Reaction: Synthesis of Triphenylmethanol Hai Liu TA: Ara Austin Mondays: 11:30-2:20 Abstract: In this experiment‚ phenylmagnesium bromide‚ a Grignard reagent was synthesized from bromobenzene and magnesium strips in a diethyl ether solvent. The Grignard reagent was then converted to triphenylmethanol‚ a tertiary alcohol with HCl. The reaction for phenylmagnesium bromide was: The reaction for Grignard to triphenylmethanol was: In the formation of the Grignard reagent
Premium Magnesium Diethyl ether Oxygen
The Grignard Reaction Abstract Through the use of the Grignard reaction‚ a carbon-carbon bond was formed‚ thereby resulting in the formation of triphenylmethanol from phenyl magnesium bromide and benzophenone. A recrystallization was performed to purify the Grignard product by dissolving the product in methanol. From here‚ a melting point range of 147.0 °C to 150.8 °C was obtained. The purified product yielded an IR spectrum with major peaks of 3471.82 cm-1‚ 3060.90 cm-1‚ 1597.38 cm-1‚ and 1489
Premium Education World War II Learning
In this laboratory voltmeters where utilized to take reading of three different electrochemical reactions: Pb/Zn‚ Pb/Cu‚ and Zn/Cu. A salt bridge was placed between two reactions containing metal strips in separate aq solutions. The salt bridge was placed in order to balance the reaction. The voltage measurements for Pb/Zn‚ Pb/Cu‚ and Zn/Cu where .595 V‚ .479 V‚ and 1.072 V accordingly. The values obtained where then used to determine the voltage value for the reduction half. The resulting cell potential
Premium Electrochemistry Electrolysis Volt
Reactions in Aqueous Solutions: Metathesis Reactions and Net Ionic Equations Introduction: Metathesis or double decomposition reactions are a reaction in which two compounds react to form two new compounds‚ with no changes in oxidation number. The ions of two compounds exchange partners. AX + BY AY + BX This reaction can occur between two inorganic salts when one product is insoluble in water‚ driving the reaction forward. A typical example is as followed and is considered a molecular equation
Premium Sodium chloride Chlorine Chemistry
the value of the sum for Reaction 1 and Reaction 2’s change in temperature‚ compared to Reaction 3’s change in temperature. Reaction 1 was the dissolution of solid sodium hydroxide in water with a ΔH°rxn of -47047 J/mol‚ Reaction 2 was the neutralization of liquid sodium hydroxide with HCl with a ΔH°rxn of -31289 J/mol and Reaction 3 was the dissolution and neutralization of solid NaOH with HCl with a ΔH°rxn of -91000 J/mol. Consequently‚ the sum of Reaction 1 and Reaction 2 was -78336 J/mol‚ similar
Premium Chemical reaction Chemistry Chlorine
affecting the rate of reaction‚ PNPP (p-nitrophenyl phosphate) + H20 ? PNP (p-nitrophenol) + H3P04. This reaction is catalyzed by the enzyme phosphatase. Different environments produced different reaction rates as environmental factors affect the efficiency of phosphatase. This is because environmental factors can change the tertiary structure of phosphatase‚ which alters its active site‚ and thus changes its efficiency to catalyze the reaction. We measured the rate of reaction‚ by using a chromogenic
Premium Chemical reaction Enzyme Chemistry