Data Warehouse Concepts and Design Contents Data Warehouse Concepts and Design 1 Abstract 2 Abbreviations 2 Keywords 3 Introduction 3 Jarir Bookstore – Applying the Kimball Method 3 Summary from the available literature and Follow a Proven Methodology: Lifecycle Steps and Tracks 4 Issues and Process involved in Implementation of DW/BI system 5 Data Model Design 6 Star Schema Model 7 Fact Table 10 Dimension Table: 11 Design Feature: 12 Identifying the fields from facts/dimensions: MS: 12 Advanced
Premium Data warehouse Data mining Business intelligence
Big Data‚ Data Mining and Business Intelligence Techniques 2 What is Data? • Data is information in a form suitable for use with a computer. • There are two types of data ▫ Structured ▫ Unstructured • The total volume of data is growing 59% every year. • The number of files grow at 88% every year. 3 What is Big Data? Exa Analytics on Big Data at Rest Up to 10‚000 Times larger Peta Data Scale Giga Data at Rest Tera Data Scale Mega Traditional Data Warehouse
Premium Data analysis Business intelligence Data
Data Mining Information Systems for Decision Making 10 December 2013 Abstract Data mining the next big thing in technology‚ if used properly it can give businesses the advance knowledge of when they are going to lose customers or make them happy. There are many benefits of data mining and it can be accomplished in different ways. The problem with data mining is that it is only as reliable as the data going in and the way it is handled. There are also privacy concerns with data mining
Premium Data mining
A glimpse of Big Data Jan. 2013 What is big data? “Big data is not a precise term; rather it’s a characterization of the never ending accumulation of all kinds of data‚ most of it unstructured. It describes data sets that are growing exponentially and that are too large‚ too raw or too unstructured for analysis using relational database techniques. Whether terabytes or petabytes‚ the precise amount is less the issue than where the data ends up and how it is used.”------Cite from EMC’s report
Premium Business intelligence Data management Data warehouse
Data Mining On Medical Domain Smita Malik‚ Karishma Naik‚ Archa Ghodge‚ Shivani Gaunker Shree Rayeshwar Institute of Engineering & Information Technology Shiroda‚ Goa‚ India. Smilemalik777@gmail.com; naikkarishma39@gmail.com; archaghodge@gmail.com; shivanigaunker@gmail.com Abstract-The successful application of data mining in highly visible fields like retail‚ marketing & e-business have led to the popularity of its use in knowledge discovery in databases (KDD) in other industries
Premium Data mining Data Data management
billion bytes of data in digital form be it on social media‚ blogs‚ purchase transaction record‚ purchasing pattern of middle class families‚ amount of waste generated in a city‚ no. of road accidents on a particular highways‚ data generated by meteorological department etc. This huge size of data generated is known as big data. Generally managers use data to arrive at decision. Marketers use data analytics to determine customer preferences and their purchasing pattern. Big data has tremendous potential
Premium Data mining Supply chain management
Data Mining Abdullah Alshawdhabi Coleman University Simply stated data mining refers to extracting or mining knowledge from large amounts of it. The term is actually a misnomer. Remember that the mining of gold from rocks or sand is referred to as gold mining rather than rock or sand mining. Thus‚ data mining should have been more appropriately named “knowledge mining from data‚” which is unfortunately somewhat long. Knowledge mining‚ a shorter term‚ may not
Premium Data mining
Topic 1: The Data Mining Process: Data mining is the process of analyzing data from different perceptions and summarizing it into useful evidence that can be used to increase revenue‚ cut costs or both. Data mining software is one of a number of analytical tools for analyzing data. It allows users to analyze data from many different dimensions or angles‚ categorize it and summarize the relationships identified. Association‚ Clustering‚ predictions and sequential patterns‚ decision trees and classification
Premium Data mining Data
Activity 1 Reasons why organisations need to collect HR Data. It is important for organisations to collect and retain HR data as this will be key for strategic and HR planning. It will also help to have all the information necessary to make informed decisions‚ for the formulation and implementation of employment policies and procedures‚ to monitor fair and consistent treatment of staff‚ to contribute to National Statistics and to comply with statutory requirements. The key organisational
Premium Data Protection Act 1998 Employment Organization
DATA ORGANIZATION‚ PRESENTATION AND ANALYSIS Research Methods 1 Data Organization and Presentation To make interpretation and analysis of gathered data easier‚ data should be organized and presented properly. The usual methods used by researchers are textual‚ tables‚ graphs and charts. 1.1 Textual Data can be presented in the form of texts‚ phrases or paragraphs. It involves enumerating important characteristics‚ emphasizing significant figures and identifying important features of
Premium Frequency distribution