Height of Ball Drop v/s The Depth of the Crater | By Tejas Shah‚ IBDP Year 1 | | | | | | | * Aim- To find the relationship between the depth of crater and the height from which it is dropped. * Research Question- Does the height from where the ball is released affect the depth of the crater. * Hypothesis- If we increase the height of the drop of the ball; the depth of the crater would increase. This is because as there is loss in potential energy subsequently there
Premium Kinetic energy Energy Potential energy
This year in science‚ we were paired up in groups to build a car powered only by a rubber band. There was a lot of physics and thought put behind the planning of our car. The rubber band moved the car by storing up elastic potential energy which then turned into kinetic energy when released. Newton’s Laws of Motion also come in handy when thinking about how to keep the car moving. “An object in motion stays in motion.” There was also a lot of thought put into the wheels. We had to be aware of the
Premium Energy Potential energy Kinetic energy
2. Measure the mass of the parachute that with the small doll and record the data. 3. Turn on the fan/parachute to 2.5meters high. 4. Put the fan/parachute on a chair and don’t move it. 5. Drop the parachute. 6. Use the ruler to measure the distance and record. Safety: Not to hurt anyone when you drop the parachute. Data and calculation: No air resistance Fan The hair drier (small wind force) The hair drier (big wind force) Two hair drier Trial 1 64 52 50
Premium Measurement Wind Force
The moment of inertia is a measure of an object’s resistance to changes in its rotation. It must be very specific to the chosen axis of rotation. Also‚ it is specific to the mass and shape of the object‚ including the way that is mass is distributed in the object. Moment of inertia is usually quantified in kgm2. An object’s where the mass is concentrated very close to the center of axis of rotation will be easier to spin than an object of identical mass with the mass concentrated far from the axis
Premium Classical mechanics Kinetic energy Potential energy
Therefore the sum of all the energies in the system is a constant. TMEinitial=TMEfinal 3. Explain the basic ideas that govern the design and operation of a roller coaster. A roller coaster is operated and designed through the application of Physics. The law of Conservation of Energy governs the changes in a coaster ’s speed and height. Simply put‚ the higher an object is off the ground‚ the more potential energy it has - that is‚ potential to gain speed as it falls. As it falls toward the ground
Premium Energy Force Kinetic energy
1.1 GRAVITY AND GRAVITATIONAL FIELDS 1.1.1 Define weight as the force on an object due to a gravitational field. Weight is the force experienced by an object due to the presence of a gravitational field. This force is directly related to the strength of the gravitational field acting on an object and the mass of that object. m = mass‚ g = acceleration due to gravity m = mass‚ g = acceleration due to gravity Fg = mg Fg = mg 1.1.2 Explain that a change in gravitational
Premium Special relativity General relativity
Kinematics / Projectiles x =?vt ?v = (v + vo)/2 v = vo + at x = vot + ½at2 v2 = vo2 + 2ax y =?vt ?v ’ ½(vo + v) v = vo – gt y = vot – ½gt2 v2= vo2 – 2gy R = (v02/g)sin(2θ) Forces Fnet = ma Fgravity = mg Ffriction ≤ μsN Ffriction = μkN Circular Motion Fnet = mv2/r ac = v2/r v = 2πr/T f = 1/T T = 1/f Gravitation F = GM1M2/R2 g = GM/R2 T2/R3 = 4π2/GM = constant GM = Rv2 Energy W = Fdcosθ KE
Premium
Chapter 6. Uniform Acceleration Problems: Speed and Velocity 6-1. A car travels a distance of 86 km at an average speed of 8 m/s. How many hours were required for the trip? [pic] [pic] t = 2.99 h 6-2. Sound travels at an average speed of 340 m/s. Lightning from a distant thundercloud is seen almost immediately. If the sound of thunder reaches the ear 3 s later‚ how far away is the storm? [pic] t = 58.8 ms 6-3. A small rocket leaves its pad and travels a
Premium Velocity Acceleration
** Atom and Introduction to Nuclear physics ** Introduction Alpha-particle scattering 2.1 Experimental set-up ➢ Alpha particle o is a high-energy helium nucleus with 2 protons and 2 neutrons. o has 2 positive charges. ➢ Gold foil was chosen since it has a high atomic mass. Thin gold foil‚ ~10-6m was bombarded by high-energy alpha particles. ➢ Angular deflections/ scattering of alpha particles were measured by observing
Premium Neutron Atom Radioactive decay
Experiment 5: Relative Density Patrick Erlo Reyes‚ Joseph Winfred Sajul‚ La Reyna Roshele Salenga‚ Luisito Jeremiah Samonte‚ Christine Bernadette Sanchez Department of Biology College of Science‚ University of Santo Tomas España‚ Manila‚ Philippines Abstract This experiment is concerned with the densities of objects. The first activity is determining the density of a cylinder through displacement method and by weighing. The second activity is finding the density of a bone and determining it whether
Premium Density