Collision Impulse and Momentum PH215L Physics 1 Lab Lab#8 Lab Was Held: 3/20/14 Report Submit: 3/27/14 Professor List Daniel Webster College Table Of Contents Introduction Theoretical background Equipment list Procedure Calculations and Results Discussion Conclusion Introduction In this lab we tested the duration of impact‚ the force of impact and the change of momentum of the particles involved in the collision all
Premium Classical mechanics Force Object-oriented programming
Laboratory Report Cover Sheet DeVry University College of Engineering and Information Sciences Course Number: ECET110 Professor: Laboratory Number: 1 Laboratory Title: Analysis of a Series Circuit using Simulation and Actual Construction Submittal Date: 3/8/2014 Objectives: 1. To construct a series circuit and measure its equivalent resistance. 2. To predict and verify electrical characteristics of a series circuit using Ohm’s Law and Kirchhoff’s Voltage Law. 3. Determine
Premium Ohm's law Electric current Resistor
Interpretations: 1. The time required for the objects with different masses to fall equal distances was equal. 2. The average speed of the two different masses was quite similar‚ within one tenth of a second of each other. 3. Yes‚ because physics theory says that objects free falling‚ where the only force acting on them is gravity‚ accelerate at the same rate no matter what their mass is. 4. The change in spacing of the dots tells us that the speed of the object is increased as it falls
Premium Mass Acceleration
The Physics 500 Introduction: The purpose of this lab is to show how to calculate the average speed and acceleration in six different races. In order to find average speed you will need to use the formula s=d/t (s= speed‚ d=distance‚ t=time). On the other hand‚ for accelaration you will use the formula a= vf-vi/t (a=acceleration‚ vf=final velocity‚ vi= initial velocity‚ t=time). Average speed is how fast something is moving; the path distanced moved per time. Acceleration is the
Premium Classical mechanics Velocity Force
DCP CE lab report for thermal physics Jeff Raw data collection: temperature (K)±1K | length (cm)±0.05cm | diameter(cm) ±0.05cm | volume(cm^3) | uncertainty for volume | 342 | 7.3 | 0.28 | 0.449271 | 0.163531 | 338 | 7.0 | 0.28 | 0.430808 | 0.156937 | 336 | 6.7 | 0.28 | 0.412345 | 0.150343 | 334 | 6.3 | 0.28 | 0.387727 | 0.141551 | 331 | 6.1 | 0.28 | 0.375418 | 0.137155 | 329 | 5.9 | 0.28 | 0.36311 | 0.132759 | 326 | 5.5 | 0.28 | 0.338492 | 0.123967 | 325 | 5.4 |
Premium Measurement
Measuring Time Date Due: 2013.09.23____ Name: Lily Li____ Class: A__ Teacher: ___Mrs Slater___ Purpose: To determine the period and the frequency of a ticker timer. Materials/Apparatus: One ticker timer One carbon paper disc One 1.5+ meter tape One test tape One stop-watch Theory: The recording timer is a device that helps you study motion‚ it is a simple electric device plugged
Premium Time Frequency Error
REPORT FOR EXPERIMENT 1 MEASUREMENT Group 5 Name: Tien Pham PHYS 2125 Class number 35818 Day: 1/14/1013 Instructor: Dilipkumar Mehta OBJECTIVES The purpose of the experiment is to determine the diameters and
Free Measurement Volume Orders of magnitude
OF EXPERIMENT The purpose of this lab was to determine the magnitude of the uncertainties produced when making measurements using common lab equipment. II.APPARATUS AND MATERIALS NEEDED safety goggles distilled water (at 20°C) laboratory apron dropper laboratory balance 2 objects of unknown mass standard masses graduated cylinder‚ 10-mL graduated cylinder‚ 100-mL III.PROCEDURE Part A: Estimating the Uncertainty of a Balance 1.We put on lab aprons and goggles. Then‚ we used the
Premium Mass Measurement Uncertainty
object. | Buoyant ForceB=Δmg=ρf VobjgThis equation was used to calculate the buoyant force of an object. | Experimental Procedure: ProcedureA: * Setup similar to the spring constant lab * Use the same or a similar spring from the spring constant lab * Find the spring constant of the smallest spring used from previous lab if not already foundB: * Use the same metal rod from the Error of Propagation experiment and attach it to the bottom of the spring * Fully submerged the metal rod in a
Premium Management Marketing Mass
Physics Lab Report: Parallel Force Aim: To test the principle of moments. Apparatus: Metre rule with holes drilled at the 25cm‚ 50cm and 75cm mark‚ 50g masses 50mm long bolt with a diameter of approximately 5mm‚ retort stand‚ boss head and clamp‚ 0-10 N spring balance‚ electronic pan balance ‚wire or string for suspending masses from the metre rule‚ two bulldog clips. Part A: Balancing a constant moment. Procedure: 1. The experiment is set up by first placing the bolt through the rule‚ then
Premium Force Mass Kilogram