INVESTIGATING EQUILIBRIUM EXPERIMENT Objectives 1. To recognize the macroscopic properties of three chemical systems at equilibrium. 2. To observe shifts in equilibrium concentrations as stresses are applied to the systems. 3. To explain observations by applying LeChatelier’s Principle. Materials 12 test tubes test tube rack 2 -100mL beakers beaker tongs safety glasses stand ring clamp wire gauze bunsen burner
Premium Chemical equilibrium Sodium chloride Chemical reaction
Chemical Equilibrium: Finding the Formation Constant of FeSCN2+ (aq) Fe3 +(aq) iron(III) + SCN–(aq) FeSCN2+(aq) D thiocyanate thiocyanoiron(III) kf = € FeSCN2 + [ ] Fe +3 [SCN− ] [ ] Objective The purpose of this experiment is to determine the constant formation‚ Kf‚ (equilibrium constant) for the formation of thiocyanoiron(III). Fe3+ (aq) + SCN-(aq) Kf D FeSCN2+ (aq) Background Information Consider the following reaction: Fe3+
Premium Chemical equilibrium Chemistry
Chemical reactions are a part of everyday lives. Whether it is the burning of propane at a kitchen stove‚ or washing detergent reacting with dirt stains‚ chemical reactions are useful tools that have widespread applications. With so many reactions assisting our everyday activities‚ it is important that ways to optimise reaction rates are investigated. “Reaction rate‚ the speed at which a chemical reaction proceeds… may be defined in terms of the amounts of the reactants consumed or products formed
Premium Chemical reaction Chemistry Reaction rate
Introduction: A chemical reaction involves the breaking and forming of bonds in order to create the necessary energy required to cause movement. Each reaction is catalyzed (an increase in rate because of a present catalyst) by a specific enzyme. Enzymes are able to denature proteins‚ meaning that a protein loses its original shape by uncoiling‚ giving it a random‚ unstructured shape. The pineapple plant contains bromelain which‚ because of its unique characteristics‚ keeps gelatin from thickening
Premium Enzyme Chemical reaction Metabolism
CHEMICAL EQUILIBRIUM Reversible reactions and dynamic equilibrium Ammonia (NH3) is an important industrial chemical that is used in the manufacture of fertilisers. It is manufactured by reacting hydrogen with nitrogen. The reaction is said to be reversible and the conversion of reactants to products is never complete. N2 + 3H2 2NH3 A reversible reaction is a reaction which can take place in either direction When the concentrations of the reactants and product have become constant‚ a
Free Chemical equilibrium Chemical reaction
compare that relative reactivity of Na and k -Sodium and potassium react somewhat similar when reacting with water however they are slightly different. Sodium moves because of the hydrogen coming off of it and has a low melting point while potassium’s reaction is faster and enough heat is produced to set light to the hydrogen coming off of it. Each leaves a pink color hue in the water. Discuss the similarities and differences in the behavior of the metals tested with water relative to their positions
Premium Chemistry Chemical reaction Water
Determination of the Equilibrium Constant of an Unknown Ester Hydrolysis Reaction Abstract The experiments to follow determined that the equilibrium concentrations of the reaction: ester + water ↔ alcohol + acid‚ are equal to 0.0363 moles of ester‚ 0.2852 moles of water‚ and 0.0268 moles each of alcohol and acid. Using this information the equilibrium constant was determined to be 0.06938. 1. Introduction In this lab the equilibrium constant‚ Kc‚ for the acid catalyzed reaction between
Premium Chemistry Chemical equilibrium Chemical reaction
October 21‚ 2013 Designing an Experiment to Investigate Factors Affecting Rate of Reaction Introduction Hydrogen Peroxide (H2O2)‚ is the most simple peroxide and commonly used in several household items such as toothpaste or as an alternative to bleach. However hydrogen peroxide it is a very dangerous substance when accumulated in large amounts. If that situation occurs this substance must be decomposed. But how can we decompose this reaction? Well it decomposes by itself very slowly (2H2O2(aq) ->
Premium Oxygen Hydrogen peroxide
by Georg Wittig in 1954‚ the Wittig reaction is a robust organic synthesis method for preparing stereospecific alkenes. In general‚ Wittig reactions involve an aldehyde or ketone and a Wittig reagent (triphenylphosphonium ylide) and result in the formation of an alkene product and triphenylphosphine oxide (side product). Stereospecific alkene products can be synthesized by adjusting the reaction reagents and conditions. In the 60 years since the Wittig reaction was discovered‚ many articles have
Premium Alkene Aldehyde Chemical reaction
The lab today was focused on finding the ratio of reactants to products to be either 1 to 1 or 1 to 2. In our case the reactants was Lead (II) Nitrate and Potassium Iodine. These two when mixed together make Lead Iodide and Potassium Nitrate. We also had to try and find if the number of moles of Lead(II) Nitrate was the same as the final number of moles for Lead Iodine after the experiment. Our data for the lab had pinpoint accuracy. Proved by the data table below Trials Volume of Pb(NO3)2 Mol
Premium Chemistry Chemical reaction Water