Questions and Hypothesis: Seed germination‚ plant growth‚ and sprouting of leaves are affected by several factors: supply of nutrients‚ water‚ exposure to sunlight‚ and conditions of surroundings. Due to certain stimuli in the surroundings plant “hormones” cause plants to behave in ways that ensure the most efficient use of resources while preserving the most energy. One stimulus to consider‚ is the exposure of plants to sunlight; when plants are just sprouting and are underground‚ the sti
Premium Week-day names
Production of Shikimic Acid Extracting Shikimic Acid from the Plant Chemical Synthesis of Shikimic Acid Biosynthesis & Shikimic Acid Pathway Fermentation of Shikimic Acid using Microorganisms Contrasting Production Methods & Advantages of Fermentative method Investigating Appropriate Strains Results & Future Aspects of Shikimic Acid Fermentation References Acknowledgement The achieved results in this seminar and the upcoming relevant project are owing to undeniable helps and support
Premium Influenza Influenza pandemic Avian influenza
(2) being able to apply that understanding of the microbial world so that the benefits to the Earth and humans are known(6). This lab specifically does not require the knowledge of what each organism does when introduced to another living organism‚ like a human. Figuring out the type of bacteria could help with further experiments. The idea of the unknown bacteria lab is to show
Premium Bacteria Microorganism Organism
bacteria will be one of the following: Enterococcus faecalis‚ Staphylococcus saprophyticus‚ Escherichia coli‚ Enterobacter aerogenes‚ Proteus vulgaris‚ Salmonella [I assume typhimurium]‚ or Shigella [either flexneri or sonnei‚ we used both in our lab during the semester]. Procedure {and observations}: Observe bacterial colony morphology. {Colonies are large‚ beige or cream-colored‚ with irregular borders.} Prepare two slides for gram staining and viewing under a microscope. {Either my gram-stain
Premium Bacteria Escherichia coli Gram staining
Introduction In unit 7.3 the experiment tested the ability of lactase to specifically bind and interact with lactose compared to maltose. In unit 7.4 the experiment tested the role‚ if any‚ that metal ions have on the activity of lactase. My hypothesis for unit 7.3 was knowing that lactase is specific for lactose‚ lactose will separate into galactose and glucose‚ as maltose will not change (153-155). Lactase should like lactose. For unit 7.4 my hypothesis was that EDTA will remove the ions‚ and
Premium Null hypothesis Enzyme Disaccharide
Limiting Reagent and Percent Yield Aim To determine the limiting reagent between the reaction of lead (II) nitrate and potassium iodide. To determine the percent yield of lead (II) iodide. Date Started: 13/4/12. Finished: 19/4/12. Data collection and processing Measurements: * Amount of distilled water: 75.0ml ± 0.5ml. * Mass of watch glass: 31.65g ± 0.01g. * Mass of watch glass + potassium iodide: 32.45g ± 0.01g. * Mass of potassium iodide: 0.8g ± 0.02g. * Mass of watch
Premium Stoichiometry Yield Molecule
TABLE OF CONTENT NO. | CONTENT | PAGE | 1. | Title | 2 | 2. | Theory | 2 | 3. | Introduction | 2 | 4. | Objective | 3 | 5. | Apparatus | 3 | 6. | Procedure | 4 | 7. | Result | 6 | 8. | Calculation | 10 | 9. | Discussion | 13 | 10. | Conclusion | 14 | 11. | References | 14 | TITLE: H1 – Osborne Reynolds Demonstration INTRODUCTION: Osborne Reynold’s Demonstration has been designed for students experiment on the laminar‚ transition and turbulent flow. It consists of a transparent
Free Fluid dynamics Reynolds number Viscosity
Tittle : Investigation of the Enzymatic Effects of Materials on Hydrogen Peroxide Solution Objective: To investigates the enzymatic effect of various materials in the hydrogen peroxide solution. Table 1 Test Tube Contents with 5 cm3 hydrogen peroxide Observations before and after using wood splint Observation of after Observation of after adding hydrogen using wooden glowing peroxide splinter 1 Fresh liver Moderate
Premium Oxygen Hydrogen peroxide Catalase
Inorganic Chemistry 1. A subatomic particle with a single positive electrical charge is protons. 2. A subatomic particle with a single negative electrical charge is electrons. 3. A subatomic particle which is electrically neutral is neutrons. 4. The nucleus of an atom is made up of _protons_ and _neutrons. 5. The number of electrons forming a charge cloud around the nucleus is (pick one of the following) greater than; equal to; smaller than the number of protons in the nucleus of the atom.
Premium Atom Electron
EXPERIMENT I Photoreduction of Benzophenone Introduction The study of chemical reactions‚ isomerizations and physical behavior that may occur under the influence of visible and/or ultraviolet light is called Photochemistry. The fundamental principles for understanding photochemical transformations are that light must be absorbed by a compound in order for a photochemical reaction to take place‚ and that for each photon of light absorbed by a chemical system only one molecule is activated for
Premium Oxygen Sunlight Electromagnetic radiation