EXPERIMENTAL MANUAL Mass Transfer Lab Diffusion Coefficient Apparatus DEPARTMENT OF CHEMICAL ENGINEERING UNIVERSITY OF GUJRAT‚ GUJRAT. GENERAL OPERATING PROCEDURES General Start-up Procedure: Prior to running an experiment‚ students are advised to perform the following startup procedure. Fill the water with clean (preferably filtered) water to approximately 20 mm from the top. Plug the main cable to the electrical supply. Be sure that the voltage of the supply is correct
Premium Liquid
Chapter 3: FLUID FLOW CHAPTER THREE FLUID FLOW 3.1 3.2 3.3 3.4 3.5 Fluid Flow Unit Pump Test Unit Hydraulics bench and accessories Flow Curve Determination for Non-Newtonian Fluids Fixed and Fluidized Bed Facts which at first seem improbable will‚ even in scant explanation‚ drop the cloak which has hidden them and stand forth in naked and simple beauty. GALILEO GALILEI 1 3.1. FLUID FLOW UNIT Keywords: Pressure loss‚ straight pipe‚ pipe bend‚ orifice meter‚ venturi meter
Premium Fluid dynamics Viscosity
Fluid Report 2 In the derivation of Bernoulli’s equation‚ the assumption of the inviscid and incompressible flow is used. However in the real case‚ the viscosity cannot be neglect and the density of the flow is not always constant. Thus Bernoulli’s equation is not always correct. For the lab‚ it is reasonable to assume the flow is inviscid and incompressible. Firstly‚ the pitot was placed at the center of the flow. The skin friction (effect of viscosity) is inversely proportional to distance
Premium Viscosity Fluid dynamics Shear stress
Fluid Mechanics 3-Aerofoil Lab Report Introduction This report aims to investigate the effect the angle of attack of an aerofoil has on the air flow around it. This was done by recording the lift and drag forces the aerofoil experienced when positioned at different angles of attack. The experimental lift force the aerofoil experienced when positioned at different angles of attack was then compared with theoretical values. An attempt was made to explain any discrepancies
Premium Aerodynamics Angle of attack Airfoil
Without friction the world would be very different! It would be so strange in a bad and good way..... For a start‚ walking would be different because when you put your weight on the foot behind you there would be nothing to stop it sliding. You would fall over and not be able to walk. It would be very hard to get around. You could consider blowing yourself around but it still wouldn’t work. Taking in a breath‚ you would slide forward and then blowing out‚ you would slide backward! Having no friction
Free Earth Toothpaste Automobile
City University London Fluid Flow in a Duct of Varying Cross-Section Report: Khurshidanjum Pathan‚ Group A1a Abstract: The experiment is carried out to demonstrate the relation between pressure and fluid velocity in a duct of varying cross-section by using Bernoulli’s equation and continuity equation.(1) Bernoulli’s equation relates the pressure to the velocity for a fluid of constant density flowing in a Venturi tube. Static head‚ normalised head and percentage of errors were calculated using
Premium Fluid dynamics
Life Without Friction By: Anthony Cacciato Life without friction would be dangerous. There would be things flying all around and no one would be safe from an airborne bicycle. You would not even be able to stand on your feet. You would not be able to eat or drink. Life with no friction would be deadly. Nothing would be able to sustain life without friction. We would all die if out of the blue friction went away. There are four kinds of friction and they all help us go throughout our daily lives;
Premium Friction Force Classical mechanics
negligible loses‚ 3 standard flanged 90 smooth elbows (KL = 0.3 each)‚ and a sharp-edged exit (KL = 1.0). We choose points 1 and 2 at the free surfaces of the river and the tank‚ respectively. We note that the fluid at both points is open to the atmosphere (and thus P1 = P2 = Patm)‚ and the fluid velocity is 6 ft/s at point 1 and zero at point 2 (V1 = 6 ft/s and V2 =0). We take the free surface of the river as the reference level (z1 = 0). Then the energy equation for a control volume between these two
Premium Fluid dynamics Viscosity Fluid mechanics
PHYS 111N Experiment 06: Friction Submitted by: Porsha Renee Sumner Lab Partners: Amber Carter‚ Emily Rawles‚ Clayton Scott Wednesday‚ March 6‚ 2013‚ 9:00 AM Lab Instructor: Uttar Pudasaini Introduction In this experiment we will be examining how the kinetic friction coefficient is altered by changing the mass‚ surface area‚ speed‚ and material contacting each other. In order to find this value‚ we will be using a pulley apparatus that will allow us to measure the average velocity and manipulate
Premium Velocity Classical mechanics Mass
CHAPTER 1: FLUID PROPERTIES LEARNING OUTCOMES At the end of this topic‚ you should be able to: Define Fluid State differences between solid and fluid Calculate common fluid properties: i. Mass density ii. Specific weight iii. Relative density iv. Dynamic viscosity v. Kinematic viscosity INTRODUCTION Fluid Mechanics Gas Liquids Statics i F 0 F 0 i Laminar/ Turbulent Dynamics ‚ Flows Compressible/ Incompressible Air‚ He‚ Ar‚ N2‚ etc. Water‚ Oils‚ Alcohols‚
Premium Viscosity Density Liquid