original state and the percent of the hydrate recovered was calculated by using the mass of the rehydrated sample by the mass of the original hydrate and then multiplied by 100%. Data Presentation & Analysis Table 1: The data was collected from the lab experiment. Sample calculations are shown. Mass of beaker with sample 30.765g Mass of empty beaker 30.263g Mass of sample .502g Mass of beaker with sample after 1st heat 30.661g Mass of beaker with sample after 2nd heat 30.657g Heating mass
Premium Mathematics Mole Heat
The lesson is divided into 3 labs that can be completed in any order. After labs have been completed‚ facilitate a class discussion where students summarize and compare findings and relate how their findings support (or refute) Newton’s Laws of Motion LAB 1: How fast can it go? Put one car at the top of the ramp and let it roll down. Use a stopwatch to record the time the car rolled. Use this information to calculate the acceleration of the car. Measure the distance the car rolled using the
Premium Automobile Education Learning
Bio Lab Report Erica Patterson September 10‚2013 Intro to cellular and molecular Biology Lab Abstract: In the Biology Laboratory Manual by Darrell S. Vodopich and Randy Moore are results to a similar experiment. The studied the hypothesis of carbon dioxide production by yeast fed sugar is not significantly different than the carbon dioxide production by the yeast fed in protein. Their hypothesis is the one that has helped formulate ours. We also will be answering the same to questions “What
Premium Carbon dioxide Metabolism
When Chemicals React! Mr. Bell’s honors level chemistry class conducted an experiment during their lab demonstrations‚ this consisted of elements such as phosphorus and calcium chloride in their experiment. This along with another hydrogen based sunstance produced‚ what looked like a pinkish-looking substance inside of their flasks that were at their lab stations. Sophmore Kelly Caudel said‚ “ I actualley enjoy doing the experiments in this class‚ because it gives us a chance to get away from
Free Chemistry
Engine Lab Report Diesel Engine Load/N |Fuel Time/s |dH/mmH2O |Speed/r.p.m |Temp/℃ |Air consumption/kg/H |Fuel consumption/kg/H |Air-fuel ratio |Power/kw |Efficiency/ % | |40 |121.6 |17.5 |3018 |26.6 |130.16 |2.47 |52.7 |4.5 |0.019 | |80 |94.72 |17.5 |3009 |26.7 |130.14 |3.17 |41.05 |8.97 |0.059 | |125 |72.76 |17 |3009 |26.8 |128.25 |4.12 |31.13 |14.02 |0.111 | |171 |56.95 |17 |3000 |26.9 |128.23 |5.72 |24.33 |19.12 |0.161 | |212 |46.06 |16.5 |3006 |27.1 |126.28 |6.51 |19.40 |23.76 |0.202 | |232
Premium Internal combustion engine Fuel injection Diesel engine
the percent yield by dividing the expected yield‚ the amount of product that should be produced based on your stoichiometric calculations‚ by the actual yield‚ the amount of product that is experimentally obtained from a chemical reaction. In this lab‚ I have determined the reaction for mixing two reactants together; I measured out 0.005 moles of each reactant‚ lead (II) nitrate and potassium chromate. I dissolved‚ mixed‚ and made them react to make products; I compared the mass of the two reactants
Premium Stoichiometry Chemical reaction
Name: Danielle Title: Unknown Lab Report Introduction: There are many reasons for identifying an unknown bacterium. The reasons range from medical purposes‚ such as determining if the unknown could cause ailments in living things or knowing what microorganisms are needed to make antibiotics. The experiment was done by applying methods in order to identify an unknown bacterium. An unknown bacterium was handed out by Dr. Honer. The appropriate tests were prepared and applied. The
Premium Bacteria Escherichia coli Microbiology
Bioinformatics Lab Report Hypothetical Phylogenetic Tree: Using a cladistic approach‚ we constructed a hypothetical phylogenetic tree of many different plant taxa by comparing their morphologies. We first decided to sort the various types of plants into groups based on morphological features. After sorting these plants into five different groups we began to determine how the plants differed from eachother in the group and what features set them apart. From this we started to create
Premium
Lab Report Enzymes (must be typed) Name: Amanda Gallegos Date: 2/15/15 Section: BIOL 101GL What is the Hypothesis of this experiment? (3 points) -The highest temperature will affect the reaction rate of enzymes. What is the dependent variable? (1 point) -Change of rate/product/color/absorbency. What is the independent variable? (1 pt) -The temperature. Explain in detail the procedure that you followed (including amount of substrate‚ enzyme etc‚ and the whole procedure including incubation times)
Premium Boiling Water Distillation
zmosis The IB Lab Report Measuring osmosis 1. Introduction My experiment is about osmosis on a potato and if or the quantity of salt affects osmosis. I would do the experiment with 5 potatoes cut into squares all the potatoes weight the same so the weight can`t be a variable the I put the potatoes on 5 different plastic cups with different amounts of salt and then I weight them again to see if the quantity of salt affected the osmosis of potatoes 1a. Research question ¿Does the quantity
Premium Osmosis Chemistry Concentration