Experiment 8: Synthesis of Adipic Acid Performed November 8th & 10th By Jennifer Seitz Organic Chemistry 344 Section 803 Fall 2011 Objective: The purpose of this experiment was to synthesize adipic acid from cyclohexanol via an oxidation reaction that was catalyzed by sulfuric acid. Purity of the product was assessed by measuring the melting point. Physical Properties/Structures: Name | Formula | Molecular Weight (g/mol) | Boiling Point (0C) | Melting Point(0C) | Density(g/mL)
Premium Alcohol Oxidizing agent Aldehyde
Experiment # 3 Acetylsalicylic Acid Introduction: The purpose of this experiment is to create and isolate pure acetylsalicylic acid from the substances salicylic acid and acetic anhydride. Then one will find the melting point to determine purity. Procedure: Make a hot bath. Weigh some salicylic acid and place in conical vial. Add .480mL of acetic anhydride and a drop of concentrated phosphoric acid. Drop in a magnetic spin vane and attach air condenser to vial. Partially submerge it in
Free Aspirin Carboxylic acid Acetic anhydride
Lab #5: Grignard Reaction – Synthesis of Triphenylmethanol John Kang Chem 152L Performed: 7/20/04 Date submitted: ________________ Lab Partners: Sang Lee‚ Vicky Lai TA: John Stanko Abstract: This experiment explored the synthesis of triphenylmethanol through the use of Grignard reagents. The percent yield of the product was 10% on a relatively humid day. The melting point was calculate to be 127.2oC with a literature value of 162oC. An IR spectrum of the product was taken and used
Premium Oxygen Chemical reaction Alcohol
Synthesis of Aspirin Ling Tecson Gamido‚ Mitchiko Mariel M. Mizukami Abstract Acetylsalicylic acid‚ or also known as aspirin is known to be a drug that relives people of pain and is commonly used even today. It is synthesized from salicylic acid and ethanoic anhydride‚ both of small quantities. Phosphoric acid was used as a catalyst in the synthesis to speed up the process. Esterification is involved and the final product is aspirin with the presence of acetic acid as the byproduct. In order
Premium Pharmacology Chemistry Solubility
EXERCISE 11 Synthesis of Aspirin (Acetylsalicylic Acid from Salicylic Acid) RAQUID‚ Rency J Group 5 18L I. Introduction Due to the demand of certain reagents in the laboratory in order to perform and conduct further experiments or produce essential compounds‚ chemists continuously develop organic synthesis. This process aims to prepare and synthesize desired organic compounds from commercially or readily available ones by providing the simplest route in synthesizing the compound
Free Aspirin Carboxylic acid Acetic acid
Experiment C. Aim: To protect one of two carbonyl groups (C1) in order to allow the other to react twice with a Grignard followed by removal of the protecting group by acid hydrolysis to give final product (C2). Method: Ethyl acetoacetate (30.03g)‚ ethylene glycol (15.01g) and toluene-p-sulphonic acid (0.13g) were added to a 250 cm3 round bottomed flask‚ containing a stirrer bar and toluene (100 cm3)‚ fitted with a condenser and dean-stark head. Solution was heated strongly under reflux using
Premium Distillation Diethyl ether Magnesium
In this experiment‚ the production of a Grignard reagent (phenylmagnesium bromide) was performed from a bromobenzene reactant combined with magnesium and ether. Phenylmagnesium bromide was then transformed into a tertiary alcohol called triphenylmethanol‚ through addition of another compound called benzophenone‚ as well as additional ether. The end product of triphenylmethanol was analyzed via NMR and IR. Figure 1: Preparation of the Grignard agent by combining bromobenzene with magnesium and ether
Premium
Name Lab Section GTA Station 1. Grignard Reaction Post-lab report Fill out the appropriate sections below. Show all work. Your calculated answers need to match the answers in the table. Also‚ attach the benzophenone and product spectra. Indicate appropriate stretches including differences in both spectra. Results | | Amounts and units | |Initial
Premium Infrared Nucleophile
| Reactions of Grignard Reagents with Carbonyls | | | Tuesday 1:30 | 2/28/2012 | | Introduction This experiment explores the reactivity pattern for the addition of Grignard reagents to three different carbonyl groups: a ketone‚ an ester‚ and a carbonate. Grignard reagents are organometallic compounds that have a carbon-metal bond‚ such as carbon-magnesium. Grignard reagents are formed from the reaction of an alkyl‚ cycloalkyl‚ or aryl halide and magnesium metal in dry ether
Premium Magnesium Oxygen Diethyl ether
Grignard reaction Abstract: In this laboratory‚ triphenylmethanol was synthesised from reacting benzophenone and bromobenzene using Grignard reaction. As the reaction was to set up to produce a Grignard reagent and then recrystallize it to obtain pure sample. The percentage yield obtained was 55% and its melting point was 161 co which is within the literature value 160-163 co. In addition to that the IR spectroscopy confirmed the molecule structure to be triphenylmethanol. Introduction: The Grignard
Premium Alcohol Ethanol Functional group