Hydrocinnamic acid underwent bromination using N-bromosuccinimide and AIBN. As one lab partner set up the reflux apparatus‚ the other measured the chemicals used in the lab experiment. 2.10 g of hydrocinnamic acid was used. It was observed as white and had a slight cinnamon smell. The amount of NBS was 2.49g and was measured in the fume hood. AIBN was measured at .030 g. 10 mL of acetic acid was also obtained. The reflux apparatus consisted of a 25 mL flask with a stir bar in a water bath. The chemicals
Premium Chemistry Water Sodium hydroxide
This solution served as the source of ionic Iron for the remainder of the lab and was labeled “stock ionic Iron solution.” Next‚ a 50-mL aqueous ionic Iron and FerroZine® complex solution was prepared by adding 5.00mL stock ionic Iron‚ 3-mL of acetic acid buffer‚ 2-mL of 5% hydroxylamine hydrochloride‚ allowing five minutes for hydroxylamine to reduce Fe3+ to Fe2+‚ adding 2.5-mL of 0.01 M FerroZine® solution‚ and mixing well. A single beam Agilent technologies CARY60-UV-Vis Spectrophotometer was then
Premium Chemistry Titration Water
which both prove the erythro-2‚3-dibromo-3-phenylpropanoic. Determination of the Stereochemistry of 2‚3-dibromo-3-phenylpropanoic acid. Introduction The purpose of this experiment was to determine the mechanism of the reaction of trans-cinnamic acid with the addition of bromines to 2‚3-dibromo-3-phenylpropanoic acid. An addition of bromine was added to trans-cinnamic acid and it is necessary to determine whether the intermediates were syn or anti addition or a mixture of them both to find the stereochemistry
Premium Chemistry Chemical reaction Temperature
Small samples of acetaminophen‚ acetylsalicylic acid‚ cellulose‚ starch‚ and caffeine were obtained. These samples were then placed into seperate sets of test tubes that contained water‚ acetone‚ or dichloroethane. Solubilities were then tested for each sample in each solution which can be seen in Table 5. Next‚ four random pills were obtained and weights were taken of each. Each of the pills were grinded up using a separate mortar and pestle. The grinded up pills were then weighed. The grinded
Premium Chemistry Water Oxygen
Objective: The purpose of this experiment was to prepare the Grignard reagent methylmagnesium iodide and react it with benzoin to form the 3o alcohol 1‚2-diphenyl-1‚2-propanediol‚ through an addition reaction pathway. Introduction: Grignard reagents are alkyl or aryl-magnesium halides that act as the nucleophile in Grignard reactions‚ where ketones are reacted with the reagent‚ then treated with acid to produce an alcohol. In the case of this experiment‚ methylmagnesium iodide was created
Premium Magnesium Diethyl ether Methane
Synthesis of Salicylic Acid from Wintergreen Oil Objective – Preparation of salicylic acid (organic synthesis) from methyl salicylate utilizing previously used procedure from the nineteenth century. The final product will then be evaluated in comparison to salicylic acid made from benzene. Discussion – In this synthesis‚ methyl salicylate is the starting material or precursor and salicylic acid is the target product. It is the major constituent of wintergreen oil. The difference in structures
Premium Functional group Carboxylic acid Alcohol
Synthesis and Purification of Acetylsalicylic Acid (ASA or Aspirin) Background Salicylic acid is a phenol as well as a carboxylic acid. It can therefore undergo two different types of esterification reactions‚ creating an ester either with the hydroxyl or with the acid. In the presence of acetic anhydride‚ acetylsalicylic acid (aspirin or ASA) is formed. Correspondingly‚ an excess of methanol will form methyl salicylate‚ which is also an analgesic. In this experiment‚ we shall use
Free Aspirin Acetic acid Carboxylic acid
Experiment #04: Synthesis of Salicylic Acid from Wintergreen Oil I. Introduction and Purpose Until 1874 commercial salicylic acid was synthesized entirely from natural wintergreen oil. In this experiment the salicylic acid is reproduced using methyl salicylate‚ the major constituent of wintergreen oil and later compared to salicylic acid made from benzene. The purpose of this lab is to determine the difference between salicylic acid made from methyl salicylate and salicylic acid made from benzene
Premium Salicylic acid Chemistry Water
RECRYSTALLIZATION AND MELTING POINT DETERMINATION OF BENZOIC ACID ANSWERS TO QUESTIONS 1. How does the use of fluted filter paper hasten filtration? Why is it advisable to place a small piece of wire between the funnel and the mouth of the flask during hot filtration? Fluted filter paper is effective in preventing crystal formation in the filter paper. It is also often used in filtering hot saturated solution used during crystallization. One major advantage of a fluted filter is that it increases
Premium Filter paper Solvent Filters
EXPERIMENT 4: Synthesis of Salicylic Acid from Wintergreen Oil Abstract: The purpose of this experiment is to take methyl salicylate (wintergreen oil) and by heating it under reflux with NaOH as a solvent‚ and then cooling the mixture with H2SO4 as another solvent‚ synthesize salicylic acid. The final step involves purify the product to produce as pure a sample of salicylic acid as possible. This process allowed for the successful production of 1.406g salicylic acid‚ an 82.70% yield. The NMR and
Premium Acetic acid Oxygen Ethanol