Experiment C. Aim: To protect one of two carbonyl groups (C1) in order to allow the other to react twice with a Grignard followed by removal of the protecting group by acid hydrolysis to give final product (C2). Method: Ethyl acetoacetate (30.03g)‚ ethylene glycol (15.01g) and toluene-p-sulphonic acid (0.13g) were added to a 250 cm3 round bottomed flask‚ containing a stirrer bar and toluene (100 cm3)‚ fitted with a condenser and dean-stark head. Solution was heated strongly under reflux using
Premium Distillation Diethyl ether Magnesium
Grignard Reaction: Synthesis of Triphenylmethanol Hai Liu TA: Ara Austin Mondays: 11:30-2:20 Abstract: In this experiment‚ phenylmagnesium bromide‚ a Grignard reagent was synthesized from bromobenzene and magnesium strips in a diethyl ether solvent. The Grignard reagent was then converted to triphenylmethanol‚ a tertiary alcohol with HCl. The reaction for phenylmagnesium bromide was: The reaction for Grignard to triphenylmethanol was: In the formation of the Grignard reagent
Premium Magnesium Diethyl ether Oxygen
Introduction In a Grignard reaction‚ a Grignard reagent (R–MgX) adds to the carbonyl group in an aldehyde or ketone to form an alcohol (Figure 1). The reaction of a Grignard reagent with formaldehyde can be to synthesize a primary alcohol‚ with any other aldehyde can be used to synthesize a secondary alcohol‚ while the reaction with ketone is useful in the synthesis of a tertiary alcohol. Figure 1. General reaction mechanism of a Grignard Reaction The preparation of the Grignard reagent involves
Premium Acetic acid Acid Chemistry
bromide with the carbonyl compound. However‚ before any of this could be done‚ the refluxing apparatus for the Grignard reaction was to be flame dried until no moisture remained inside because any water would cause the reagent to decompose and an alkane to form. The reaction would subsequently fail. Drierite was placed inside a plastic drying tube as a drying agent‚ absorbing all the moisture from the solvents that would later be refluxing in the apparatus and coming out into the atmosphere. After setting
Premium Alcohol Functional groups Magnesium
experiment was to prepare the Grignard reagent methylmagnesium iodide and react it with benzoin to form the 3o alcohol 1‚2-diphenyl-1‚2-propanediol‚ through an addition reaction pathway. Introduction: Grignard reagents are alkyl or aryl-magnesium halides that act as the nucleophile in Grignard reactions‚ where ketones are reacted with the reagent‚ then treated with acid to produce an alcohol. In the case of this experiment‚ methylmagnesium iodide was created from methyl iodide and magnesium metal
Premium Magnesium Diethyl ether Methane
Comment: Treat a Grignard reagent as an alkyl nucleophile i.e. CH3MgBr is equivalent to CH3- nucleophile. The Grignard reagent can also react with RX to form a longer chain alkane. Example: CH3CH2MgBr + CH3CH2Br CH3CH2CH2CH3 + MgBr2 In general‚ basicity parallels nucleophilic strength since both of them depend on the availability of the lone pair of electrons. The Grignard reagent is not only able to function as a nucleophile; it can operate as a base too by reacting with water to
Premium Oxygen Magnesium Nucleophile
Synthesis of Phenacetin from para-Acetamidophenol Aims: To determine how phenacetin from acetamidophenol (known as paracetamol) is synthesized using Sodium Ethoxide Iodine‚ which is the Williamson Ether synthesis. Experimental: Sodium metal was patted dry to remove any oil and was cat into small pieces. A dry 100cm3 round bottom flask was placed on a cork ring‚ on a balance and tarred sodium metal (0.6g) was placed into the flask. The flask was then attached to the dry reflux condenser
Premium Distillation Temperature
Gringard Synthesis detailed procedure and scheme of the apparatus any changes to the original procedure‚ actual masses‚ and obs yield calculations and mp Discussion outline Grignard rxn (what is it used for‚ why important‚ the mechanism) Reaction set up (important details) How can the rxn be activated Second step: rxn of the Grignard reagent with acetophenone‚ quenching with ammonium chloride Isolation of the product‚ identification Possible or actual sources of error Part one of our experiment
Premium Magnesium Chemistry Diethyl ether
I. INTRODUCTION Synthesis Acetylsalicylic acid is an acetyl derivative of salicylic acid which appears as a white and crystalline and a weakly acidic substance with a melting point of 135°C and is also known to be aspirin. It is one of the most widely used drugs that can lower fever and is used as a painkiller. According to (Escobel‚ 2011)‚ Aspirin is synthesized through the reaction of salicylic acid with acetyl anhydride that causes a chemical reaction that turns salicylic acid’s hydroxyl group
Premium Aspirin Salicylic acid Acetic acid
Synthesis of Salicylic Acid from Wintergreen Oil Objective – Preparation of salicylic acid (organic synthesis) from methyl salicylate utilizing previously used procedure from the nineteenth century. The final product will then be evaluated in comparison to salicylic acid made from benzene. Discussion – In this synthesis‚ methyl salicylate is the starting material or precursor and salicylic acid is the target product. It is the major constituent of wintergreen oil. The difference in structures
Premium Functional group Carboxylic acid Alcohol