Grignard Synthesis of Tirphenylmethanol David Szuminsky Organic Chemistry Lab II Shaopeng Zhang Monday 1PM 2/10/14 & 2/24/14 - Abstract A sample of triphenylmethanol was prepared using Grignard synthesis techniques. Reflux was used in order to speed up the reaction and the final product was purified using recrystallization methods. The percent recovery and percent yield were 80.46% and 47.526%‚ respectively. A melting point range of 85-87oC was obtained from
Premium Chemistry Chemical reaction Alcohol
Lab #5: Grignard Reaction – Synthesis of Triphenylmethanol John Kang Chem 152L Performed: 7/20/04 Date submitted: ________________ Lab Partners: Sang Lee‚ Vicky Lai TA: John Stanko Abstract: This experiment explored the synthesis of triphenylmethanol through the use of Grignard reagents. The percent yield of the product was 10% on a relatively humid day. The melting point was calculate to be 127.2oC with a literature value of 162oC. An IR spectrum of the product was taken and used
Premium Oxygen Chemical reaction Alcohol
Research Article Vol: 2; Issue: 1 SYNTHESIS AND ANALYSIS OF BENZOPINACOL FROM BENZOPHENONE BY PHOTOREDUCTION IN GREEN CHEMISTRY. 1 Lata.C.Potey‚ 2* Dr. Satish B. Kosalge‚ 3 Rajeshwari S. Sarode 1 2 Assistant Professor‚ Hi-Tech College of Pharmacy‚ Chandrapur. Principal‚ Hi-Tech College of Pharmacy‚ Chandrapur 3 Assistant Professor‚ Hi-Tech College of Pharmacy‚ Chandrapur. Date Received: 11 TH Jan 2014 Date of Accepted: th 16 Jan 2014 Date Published: 18th
Premium Functional group Ethanol Chemical reaction
Tie-Dye Grignard Synthesis Abstract: 4-Bromo-N‚N-dimethylaniline underwent a Grignard reaction with diethyl carbonate to produce a type of the tie-dye chemical triarylmethane. This specific triarylmethane produces a vivid crystal violet color when dyed. The experiment was first heated under reflux to produce the necessary Grignard reagent as a grey liquid. It was then reacted with diethyl carbonate and hydrochloric acid to produce crystal violet. The resulting chemical was very absorbent to
Premium Chemistry Oxygen Diethyl ether
In this experiment‚ the production of a Grignard reagent (phenylmagnesium bromide) was performed from a bromobenzene reactant combined with magnesium and ether. Phenylmagnesium bromide was then transformed into a tertiary alcohol called triphenylmethanol‚ through addition of another compound called benzophenone‚ as well as additional ether. The end product of triphenylmethanol was analyzed via NMR and IR. Figure 1: Preparation of the Grignard agent by combining bromobenzene with magnesium and ether
Premium
Name Lab Section GTA Station 1. Grignard Reaction Post-lab report Fill out the appropriate sections below. Show all work. Your calculated answers need to match the answers in the table. Also‚ attach the benzophenone and product spectra. Indicate appropriate stretches including differences in both spectra. Results | | Amounts and units | |Initial
Premium Infrared Nucleophile
| Reactions of Grignard Reagents with Carbonyls | | | Tuesday 1:30 | 2/28/2012 | | Introduction This experiment explores the reactivity pattern for the addition of Grignard reagents to three different carbonyl groups: a ketone‚ an ester‚ and a carbonate. Grignard reagents are organometallic compounds that have a carbon-metal bond‚ such as carbon-magnesium. Grignard reagents are formed from the reaction of an alkyl‚ cycloalkyl‚ or aryl halide and magnesium metal in dry ether
Premium Magnesium Oxygen Diethyl ether
The purpose of this experiment was to synthesize triphenylmethanol from a Grignard reagent. The Grignard reaction technique was used in this synthesis but due to the fact that it is such a strong nucleophile and base‚ it was important to prevent water from interfering with the Grignard reaction. Purity of the product was determined by measuring the melting point. Reagent Table: Structure Name Molecular formula Molar mass Density Melting point Boiling Point Diethyl ether C4H10O
Premium Magnesium Oxygen Diethyl ether
Grignard reaction Abstract: In this laboratory‚ triphenylmethanol was synthesised from reacting benzophenone and bromobenzene using Grignard reaction. As the reaction was to set up to produce a Grignard reagent and then recrystallize it to obtain pure sample. The percentage yield obtained was 55% and its melting point was 161 co which is within the literature value 160-163 co. In addition to that the IR spectroscopy confirmed the molecule structure to be triphenylmethanol. Introduction: The Grignard
Premium Alcohol Ethanol Functional group
The Grignard Synthesis of 3-methyl-3-heptanol In this experiment‚ an example of an organometallic compound which has a carbon magnesium bond will be utilized to form a tertiary alcohol. Grignard reagents have been extremely useful in the synthesis of a large number of classes of organic functional groups. Although Grignard reagents are unstable and decompose in air and moisture‚ they can be prepared and used immediately with moderate difficulty in the undergraduate organic chemistry laboratory
Premium Functional group Chemistry Oxygen