Yield of CuCl2.2DMSO Formula weight (Mr) of CuCl2 = 63.55 + (35.45 x 2) =134.45g/mol Formula weight of product CuCl2.2DMSO = 134.45 + 2[16 + 32.06 + (12.01 x 2) + (1.0079 x 6)] = 290.704g/mol Mass of CuCl2= 0.850g Equation for reaction CuCl2 + 2DMSO -> CuCl22DMSO Mole ratio between CuCl2 and CuCl22DMSO = 1:1 Mole of CuCl2 = Mass/ Mr = 0.850/134.45 = 0.00632 moles Since the ratio between CuCl2 and CuCl22DMSO = 1:1‚ mole of CuCl2DMSO is also 0.0063 moles. To find theoretical yield of CuCl2
Premium Stoichiometry Yield Mass
Determining the Limiting Reactant and Percent Yield in a Precipitate Reaction (SMG 6D) AP Chemistry One example of a double replacement (metathesis) reaction is the mixing of two solutions resulting in the formation of a precipitate. In solution chemistry‚ the term precipitate is used to describe a solid that forms when a positive ion (cation) and a negative ion (anion) are strongly attracted to one another. In this experiment‚ a precipitation reaction will be studied. Stoichiometry
Premium Sodium Stoichiometry Chemical reaction
Grignard reaction Abstract: In this laboratory‚ triphenylmethanol was synthesised from reacting benzophenone and bromobenzene using Grignard reaction. As the reaction was to set up to produce a Grignard reagent and then recrystallize it to obtain pure sample. The percentage yield obtained was 55% and its melting point was 161 co which is within the literature value 160-163 co. In addition to that the IR spectroscopy confirmed the molecule structure to be triphenylmethanol. Introduction: The Grignard
Premium Alcohol Ethanol Functional group
we can then calculate the water evolved. The first method we use to determine the percent composition is Gravimetric. With this method we use the mass of the reactant and the mass of the product. Another way to acquire the percent composition is by the Volumetric Method. This method requires measuring the water displaced by the O2 gas. If the experiment is done correctly‚ we should be able to calculate the percent composition of KClO3 by using both methods. Theory: This experiment requires us
Free Gas Pressure Chlorine
Determining the Limiting Reactant and Percent Yield in a Precipitation Reaction Objectives: Observe the reaction between solutions of sodium carbonate and calcium chloride. Determine which of the reactants is the limiting reactant and which is the excess reactant. Determine the theoretical mass of precipitate that should form. Compare the actual mass with the theoretical mass of precipitate and calculate the percent yield. Materials: Balance 0.70 M sodium carbonate solution‚ Na2CO3(aq)
Premium
Objective: The purpose of this experiment was to prepare the Grignard reagent methylmagnesium iodide and react it with benzoin to form the 3o alcohol 1‚2-diphenyl-1‚2-propanediol‚ through an addition reaction pathway. Introduction: Grignard reagents are alkyl or aryl-magnesium halides that act as the nucleophile in Grignard reactions‚ where ketones are reacted with the reagent‚ then treated with acid to produce an alcohol. In the case of this experiment‚ methylmagnesium iodide was created
Premium Magnesium Diethyl ether Methane
The Grignard Reaction Abstract Through the use of the Grignard reaction‚ a carbon-carbon bond was formed‚ thereby resulting in the formation of triphenylmethanol from phenyl magnesium bromide and benzophenone. A recrystallization was performed to purify the Grignard product by dissolving the product in methanol. From here‚ a melting point range of 147.0 °C to 150.8 °C was obtained. The purified product yielded an IR spectrum with major peaks of 3471.82 cm-1‚ 3060.90 cm-1‚ 1597.38 cm-1‚ and 1489
Premium Education World War II Learning
Grignard Reaction: Synthesis of Triphenylmethanol Hai Liu TA: Ara Austin Mondays: 11:30-2:20 Abstract: In this experiment‚ phenylmagnesium bromide‚ a Grignard reagent was synthesized from bromobenzene and magnesium strips in a diethyl ether solvent. The Grignard reagent was then converted to triphenylmethanol‚ a tertiary alcohol with HCl. The reaction for phenylmagnesium bromide was: The reaction for Grignard to triphenylmethanol was: In the formation of the Grignard reagent
Premium Magnesium Diethyl ether Oxygen
with a 12 percent coupon. Bond D is a 6 percent coupon bond currently selling at a discount. Both bonds make annual payments‚ have a YTM of 9 percent‚ and have five years to maturity. The current yield for Bonds P and D is percent and percent‚ respectively. (Do not include the percent signs (%). Round your answers to 2 decimal places. (e.g.‚ 32.16)) | If interest rates remain unchanged‚ the expected capital gains yield over the next year for Bonds P and D is percent and percent‚ respectively
Premium Bond Stock Dividend yield
Introduction In a Grignard reaction‚ a Grignard reagent (R–MgX) adds to the carbonyl group in an aldehyde or ketone to form an alcohol (Figure 1). The reaction of a Grignard reagent with formaldehyde can be to synthesize a primary alcohol‚ with any other aldehyde can be used to synthesize a secondary alcohol‚ while the reaction with ketone is useful in the synthesis of a tertiary alcohol. Figure 1. General reaction mechanism of a Grignard Reaction The preparation of the Grignard reagent involves
Premium Acetic acid Acid Chemistry