Heat & Mass Lab 1: | | | 2/10/2011 2/10/2011 Executive Summary This experiment was conducted using a heat transfer unit. Many relationships were obtained and calculated from the observed results. To name a few; the log mean temperature difference‚ heat transfer coefficient‚ Reynolds‚ Nusselt and Graetz numbers. The main focus of this experiment is the heating and cooling of the oil fluid. This was achieved using the heating component in the heat exchanger and water flowing
Premium Heat transfer Fluid dynamics
not self-starting; currently‚ an outside power source is required to start turbine rotation until a certain rotational speed is reached. The main objective of this project is to design and build a self-starting vertical axis wind turbine. This report outlines the first term efforts in the design of our full-scale VAWT‚ which is to be built early in the second term. The self-starting issues surrounding VAWT will be tackled by the use of alternative blade profiles and pitching mechanisms. A
Premium Airfoil Wind turbine Aerodynamics
Chapter 15 & 16: Temperature‚ Heat & Heat Transfer Temperature is a measure of the average (not total) translational kinetic energy. ●ex: there is 2x as much total molecular kinetic energy in a 2L of boiling water than one‚ but the temp of the two volumes are the same (average of translational kinetic energy per molecule is the same in each → Internal Energy- the total of all molecular energies: kinetic+potential (SAME TEMP) ● Ex: apply a flame to 1L h2o for a certain time and its temp rises
Premium Electric charge Electromagnetism Electric current
DEFINITION OF HEAT TRANSFER | Heat transfer is energy in transit due to temperature difference . Whenever there exists a temperature difference in a medium or between media‚ heat transfer must occur. The basic requirement for heat transfer is the presence of temperature difference . There can be no net heat transfer between two mediums that are at the same temperature. The temperature difference is the driving force for heat transfer‚ just as the voltage difference is the driving force for electric
Free Heat transfer Heat Convection
FUNDAMENTAL CONCEPTS Heat transfer is energy in transit‚ which occurs as a result of temperature gradient or difference. This temperature difference is thought of as a driving force that causes heat to flow. The concepts of heat transfer and temperature‚ the key words in the discipline of heat transfer‚ are 2 of the most basic concepts of thermodynamics. dffffffffff rifffff orfff ffffffffff fv ing ff ce Rate of transport process= fffffffffff or rate = coefficient B driving force resist
Premium Heat transfer Fluid dynamics Heat
Activity 33 PS-2826 Latent Heat of Fusion Thermodynamics: phase change‚ latent heat of fusion‚ melting Qty 1 1 1 1 1L 0.5 L 1 Equipment and Materials PASPORT Xplorer GLX Fast-Response Temperature Probe (included with GLX) Basic Calorimetry Set (1 calorimeter cup) Balance Water‚ about 15 degrees warmer than room temperature Ice‚ crushed Towel Part Number PS-2002 PS-2135 TD-8557 SE-8723 Purpose The purpose of this activity is to determine the amount of thermal energy needed to change a specific
Premium Energy Thermodynamics Heat
Practice Problems Set – 1 MEC301: Heat Transfer Q.1 The slab shown in the figure is embedded on five sides in insulation materials. The sixth side is exposed to an ambient temperature through a heat transfer coefficient. Heat is generated in the slab at the rate of 1.0 kW/m3. The thermal conductivity of the slab is 0.2 W/m-K. (a) Solve for the temperature distribution in the slab‚ noting any assumptions you must make. Be careful to clearly identify the boundary conditions. (b) Evaluate T at the
Premium Heat transfer Heat
overall heat transfer coefficient on the outer surface of the covered pipe is 10 W/m2.K. if the velocity of the steam is 10 m/s‚ at what point along the pipe will the steam begin condensing and what distance will be required for the steam to reach a mean temperature of 100 oC? Question 2: Consider a horizontal‚ thin walled circular tube of diameter D = 0.025 m submerge in a container of n-octadecane (paraffin)‚ which is used to store thermal energy. As hot water flows through the tube‚ heat is
Premium Heat transfer Temperature Heat
Fi l +m = Fil + Fim Ji Gij qij i‚ Ji‚ Ai qij=(JiJj)/(1/AiFij) blackbody Ji=Ei(T) function of temperature Radiation network to find flux or potential 40 to 50 % ison radiation Heat exchanger U fouling factor will increase the resistance of heat transfer. how to include into the overall equation (mcp)h Th‚ in Tc‚ out (mcp)c Tc‚in You want to know the cooling effect energy conservation Q= {mcp(Th‚iTh‚o)}h ={mcp(Tc‚oTc‚i) }c Delta Tlm log mean
Premium Heat transfer
resistance R0 = 100 Ω at 0o C. If the resistance RT = 197.7 Ω in an oil bath‚ what is the temperature of the oil in the bath‚ given that RT = R0(1+αT)? Take R0 = 100 Ω R0 = resistance at 0o C α = 3.9083 x 10-3 /o C (2 marks) NDE Thermodynamics and Heat Transfer Exam 2008 Name: _______________________________________ Read all the instructions before starting Do not open this paper until instructed Time allowed: 2 hours (plus 5 minutes reading time) Attempt ALL question in Section A (questions 1 – 12)
Free Heat transfer Heat Thermodynamics