Experiment 8 - Free & Forced Convection Convection Heat Transfer.doc EXPERIMENT ON FREE AND FORCED CONVECTION HEAT TRANSFER 8.1 OBJECTIVES To study experimental data for heat transfer in order to evaluate the overall heat transfer coefficients and heat balances for the following cases of heat transfer in a .shell and tube heat exchanger. (a) Natural convection and (b) Forced convection. 8.2 THEORY A basic diagram of a shell and tube heat exchanger is shown in Figure 8.1. Here steam at a temperature
Premium Heat transfer Convection Heat exchanger
rate in one of the condensers under test. A digital temperature indicator provided has multipoint connections. Which measures temperatures of steam‚ two condensers‚ water inlet & outlet temperature of condenser water flow. OBJECTIVE : To find the heat transfer coefficient for Dropwise condensation and Film wise condensation process. TECHNICAL SPECIFICATION: Condensers : One chromium plated for drop wise condensation & one natural finish for Film wise condensation otherwise identical in construction
Premium Temperature Heat Heat transfer
ME 4053 Heat Exchanger Homework‚ 6 pts towards Thermal Fluids Lab grade Due at the beginning of your Heat Exchanger Lab Name: Phillip Ross Crumpton Attention: This is an individual assignment and collaborations are not allowed. Please pay special attention to the number of significant digits. 1. Measurements are taken in the ME4053 heat exchanger lab. From the measurements‚ the heat rate from the hot water is calculated to be 3743 W‚ and the heat rate to the cold water is calculated
Premium Heat Thermodynamics Heat transfer
Specific heat is the property of the material that an object is made of. The greater the material’s specific heat and the mass‚ the more energy must be added to change its temperature. The goals of this lab were to calculate the specific heat of water and compare to the known value of 4.19J/°Cg. Another goal was to calculate the efficiency of the hot pot used for the experiment and to estimate the cost to heat water for a cup of tea and to bath in a bathtub. The thermal energy E= cm Δ T‚ required
Premium Heat Thermodynamics Energy
Heats of Reaction Lab Report Purpose: To measure the heats of reaction for three related exothermic reactions and to verify Hess’s Law of Heat Summation. NaOH(s) ( Na+(aq) + OH-(aq) ΔH = -10.6kcal/mol NaOH(s) + H+(aq) + Cl-(aq) ( H2O + Na+(aq) + Cl-(aq) ΔH = -23.9kcal/mol Na+(aq) + OH-(aq) + H+(aq) + Cl-(aq) ( H2O + Na+(aq) + Cl-(aq) ΔH = -13.3kcal/mol Background: Energy changes occur in all chemical reactions; energy is either absorbed or released. If energy is released in
Premium
The Little Heat Engine: Heat Transfer in Solids‚ Liquids and Gases The question now is wherein the mistake consists and how it can be removed. Max Planck‚ Philosophy of Physics‚ 1936. While it is true that the field of thermodynamics can be complex‚1-8 the basic ideas behind the study of heat (or energy) transfer remain simple. Let us begin this study with an ideal solid‚ S1‚ in an empty universe. S1 contains atoms arranged in a
Premium Temperature Energy Heat
Calculations/Analysis Through this lab‚ we are now able to calculate the molar heat of combustion for paraffin‚ since we have the difference of the mass in candle before/after and the periodic table of elements (for converting g to moles of paraffin). Molar heat of combustion = (kJ of heat)/(mole of fuel) However‚ we do not know how much heat was released nor the mole of fuel (paraffin). In order to find the amount of heat released‚ we use the formula: g=mcΔT. Here‚ g represents the heat‚ m represents the mass
Premium Water Chemistry Temperature
Heat engine lab Intro: when an engine runs‚ it pumps pistons that move up and down and provide energy to the engine to it to go. These pistons move because of pressure and heat. This work done on the system is not only mechanical but its also thermodynamic. When a piston undergoes one full cycle its displacement is zero because it comes back to its resting place. This means that its net thermodynamic work to be done should also be zero‚ as well as its total internal energy. In order to test this
Premium Energy Thermodynamics Heat
CFD SIMULATION OF HEAT TRANSFER IN SHELL AND TUBE HEAT EXCHANGER KHAIRUN HASMADI OTHMAN A t hesis submitted in fulfillment for the award of the Degree of Bachelor in Che mical Engineering (Gas Technology) Faculty of Che mical and Natural Resources Engineering Universiti Malaysia Pahang APRIL 2009 i ABSTRACT Computational Fluid Dynamic (CFD) is a useful tool in solving and analyzing problems that involve fluid flows‚ while shell and tube heat exchanger is the most common
Premium Fluid dynamics Heat exchanger Heat transfer
entropy of the system .If a compression or expansion of a gas takes place with no flow of heat energy either into or out of the gas - the process is said to be isentropic or adiabatic. The isentropic (adiabatic) process can be expressed with the Ideal Gas Law as: p / ρk = constant where k = cp / cv - the ratio of specific heats - the ratio of specific heat at constant pressure - cp - to the specific heat at constant volume - cv The isentropic or adiabatic process can also be expressed as
Free Thermodynamics Temperature Heat