CHEMICAL KINETICS: IODINE-CLOCK REACTION DATE SUBMITTED: 14 DECEMBER 2012 DATE PERFORMED: 7 DECEMBER 2012 ABSTRACT Chemical kinetics involving reaction rates and mechanisms is an essential part of our daily life in the modern world. It helps us understand whether particular reactions are favorable and how to save time or prolong time during each reaction. Experiment demonstrated the how concentration‚ temperature and presence of a catalyst can change the rate of a reaction. 5 runs of dilution
Premium Chemical reaction Chemistry Reaction rate
The Iodine Clock Investigation Introduction This is an investigation into the rate of a reaction and the factors that contribute to how fast a reaction will take place. Through the recording and analysis of raw data‚ this investigation also allows us to apply generally accepted scientific rules and to test them against results gained from accurate experimental procedures. Aim The aim of this experiment is to investigate the rate at which iodine is formed when the concentration
Premium Rate equation Chemical reaction Reaction rate
Due to the lack of literature value for the effects of temperature on the rate of the Iodine Clock Reaction‚ there was no final percentage error. However‚ Looking at Graph 1.6‚ the line of best fits clearly shows the low precision throughout this experiment resulting in an increase of Random error. This could be due to the many assumptions being made in this experiment. We are assuming that there was no cross contamination between Solution A‚ B and water. Though it is highly
Premium Global warming Chemical reaction Carbon dioxide
Lab : Iodine-starch Clock Reaction Pre-lab: Before the lab was conducted‚ the concentration of the Iodate ions to be in the mixture made by dissolving specific volumes of solution A with a constant concentration and water was calculated using the dissolution formula: C1V1 = C2V2 Sample Calculation 1: Concentration of the Iodate ions: For mixture 1: C2 = C1V1/ V2 = (0.020mol/L) x (0.003L)/(0.01L) = 0.006mol/L The same calculations were used in the calculating of the
Premium Solution Time Chemistry
reaction of S2O82- + I- through a series of experiments and calculations. Materials: -Temperature probe -3 large test tubes -3 rubber stoppers -Pipets -0.20 M KI soln -0.20 M NaCl soln -0.010 M Na2S2O3 soln -2% starch soln -0.20 M K2SO4 -0.20 M K2S2O8 -0.2 M CuSO4 -Timer or stopwatch -Small beaker -Hot water Procedure: Refer to Lab #12‚ No changes Data: Table #1: Quantitative/Qualitative Observations Room Temp: 25.4°C Experiment | Time | Temperature | Observations
Premium Chemical reaction Reaction rate
Introduction The purpose of this experiment is to determine the rate equation for the “Iodine Clock Reaction” experiment. The experiment will consider the equations 〖2I〗^-+S_2 O_8→2〖〖SO〗_4〗^(2-)+I_2 and I_2+2〖S_2 O_3〗^(2-)→2I^-+S_4 O_6 in order to determine the rate law of Rate=k[〖〖S_2 O_8〗^(2-)]〗^a 〖[I^-]〗^b by using the experimental data to calculate the values of exponents a and b as well as the rate constant k. Experimental Supplies Needed: 250 mL Erlenmeyer flask‚ 100 mL beaker‚ graduated
Premium Chemical kinetics Rate equation Reaction rate
EXPERIMENT 3-CHEMICAL KINETICS: THE IODINE-CLOCK REACTION J.CHAN1 and C.CABANLIG2 1NATIONAL INSTITUTE OF MOLECULAR BIOLOGY AND BIOTECHNOLOGY‚ COLLEGE OF SCIENCE 2NATIONAL INSTITUTE OF MOLECULAR BIOLOGY AND BIOTECHNOLOGY‚ COLLEGE OF SCIENCE UNIVERSITY OF THE PHILIPPINES‚ DILIMAN‚ QUEZON CITY 1101‚ PHILIPPINES DATE SUBMITTED: JANUARY 8‚ 2013 DATE PERFORMED: DECEMBER 5‚ 2012 ------------------------------------------------- ABSTRACT The kinetics of the reaction between persulfate (S2O82-)
Premium Chemical kinetics Reaction rate Chemistry
raising their kinetic energy. However‚ the data collected from this experiment only partially supported this hypothesis. Although there was a general decrease in the reaction time when increasing the concentration of KIO3‚ 0.15M concentrations resulted in times of 45.77 and 150.47 when tested twice which was unexpectedly higher than 13.68s at a concentration of 0.1 (Table 1). Similarly‚ raising the concentration of NaHSO3 decreased the clock period with the exception of the 0.2M concentration as it had
Premium Chemical reaction Reaction rate Chemistry
Lab #3: Method of Initial Rates: Iodine Clock Introduction The detailed system of steps in a reaction is called the reaction mechanism‚ and it is one of the principal aims of chemical kinetics to obtain information to aid in the elucidation of these mechanisms in order to better understand chemical processes. Reactions usually occur in a stepwise manner with each step proceeding at a different speed. If the rate of reaction is slow enough to measure‚ this is indicative of a step much slower
Premium Reaction rate Chemical kinetics Chemistry
EFFECT OF CONCENTRATION ON REACTION RATE The aim of this experiment is to find the effect of varying the concentration of iodide ions on the rate of reaction between hydrogen peroxide and an acidified solution of potassium iodide: H2O2(aq) + 2H+(aq) + 2I⁻ → 2H2O(l) + I2(aq) The course of this reaction can be followed by carrying it out in the presence of small quantities of starch and sodium thiosulfate solutions. As the iodine molecules are produced they immediately react with the thiosulfate
Premium Reaction rate Chemical reaction Sodium