Conclusions The purpose of this experiment was to find the relationship between a substance’s specific heat and its atomic weight. In the lab‚ the substances with the higher atomic weights had less specific heat. From this‚ we can conclude that specific heat and atomic weight have an inverse relationship‚ meaning as one decreases the other increases. The reason for this is because if atoms are small‚ or light‚ they have the ability to pack tightly together‚ leaving almost no space between them
Premium Heat Chemical element Thermodynamics
Title: Specific Heat Capacities of Metals Experiment Date: 3/28/2012 Report Date: 4/4/2012 Purpose: The purpose of the lab is to measure the specific heat capacities of aluminum‚ steel and brass. Theory: The amount of heat (ΔQ) required to change the temperature of an object is proportional to the mass (m) of the object and the temperature change (ΔT) of the object. ΔQ= cmΔT where c is called as the specific heat capacity of the material. In the calorie units system the unit of quantity
Premium Heat Specific heat capacity Thermodynamics
In this lab‚ we will measure the heat of combustion‚ or calorimetry‚ of a candle and compare the found quantity with known values for other hydrocarbons. The calorific value is the total thermal energy released when a substance goes through complete combustion with oxygen. In order to achieve the purpose of this lab‚ we must first determine the mass of the tea candle. Then‚ we will determine our room temperature‚ measure about 100 mL of chilled water‚ and then pour the water into the given empty
Premium Water Temperature Oxygen
Heat of Neutralization Lab Objective: The objective of this lab was to measure‚ using a calorimeter‚ the energy changes accompanying neutralization reactions. Background: Chemical changes are always accompanied by a change in energy‚ typically as heat. If the reaction releases heat (ΔH < 0) then the reaction is exothermic. If the reaction absorbs heat (ΔH > 0) then the reaction is endothermic. The quantity of heat is measured experimentally by having the reaction take place in an insulated container called a
Premium
Calculations/Analysis Through this lab‚ we are now able to calculate the molar heat of combustion for paraffin‚ since we have the difference of the mass in candle before/after and the periodic table of elements (for converting g to moles of paraffin). Molar heat of combustion = (kJ of heat)/(mole of fuel) However‚ we do not know how much heat was released nor the mole of fuel (paraffin). In order to find the amount of heat released‚ we use the formula: g=mcΔT. Here‚ g represents the heat‚ m represents the mass
Premium Water Chemistry Temperature
MECHANICAL ENGINEERING 449 SENIOR LAB Test of a Heat Pump Submitted Submitted by: Submitted to: Executive Summary: The purpose of this experiment was to determine the performance values of a Hylton Air and Water Heat Pump System. The system uses refrigerant 134a and water as the working fluids. The power input of the system was measured. The rate of heat output and the coefficient of performance are
Premium Thermodynamics Heat Heat pump
Heat engine lab Intro: when an engine runs‚ it pumps pistons that move up and down and provide energy to the engine to it to go. These pistons move because of pressure and heat. This work done on the system is not only mechanical but its also thermodynamic. When a piston undergoes one full cycle its displacement is zero because it comes back to its resting place. This means that its net thermodynamic work to be done should also be zero‚ as well as its total internal energy. In order to test this
Premium Energy Thermodynamics Heat
search- specific latent heat Q. Value for the specific latent heat of fusion of water: Specific latent heat is where the amount of energy (in joules) needed to change the state of 1Kg of a substance is called its specific latent of heat. You can calculate the amount of energy needed using the equation: energy (J) = specific latent heat (J/Kg) X mass (Kg) Material Specific heat of fusion (J/Kg) Specific latent heat of vaporisation (J/Kg) Water 334000 2260000 Lead 24500 871000 Ethanol
Premium
Cooling Drinks 1. A value for the specific latent heat of fusion for water Specific latent heat is the amount of heat energy that is needed to change the state of one kilogram of a specific substance‚ whether it’s boiling or melting‚ without increasing or decreasing the temperature of the substance. Specific latent heat of fusion is the amount of heat energy that is needed to change a specific substance from solid to liquid. The specific latent heat of fusion for water is 334 KJ/ KG. Each
Premium Specific heat capacity Energy Thermodynamics
PS-2826 Latent Heat of Fusion Thermodynamics: phase change‚ latent heat of fusion‚ melting Qty 1 1 1 1 1L 0.5 L 1 Equipment and Materials PASPORT Xplorer GLX Fast-Response Temperature Probe (included with GLX) Basic Calorimetry Set (1 calorimeter cup) Balance Water‚ about 15 degrees warmer than room temperature Ice‚ crushed Towel Part Number PS-2002 PS-2135 TD-8557 SE-8723 Purpose The purpose of this activity is to determine the amount of thermal energy needed to change a specific quantity of ice
Premium Energy Thermodynamics Heat