EXPERIMENT 2 Title : Shear Force and Bending Moment Objective : To determine the shear force and bending moment when concentrated load‚ symmetrical load and non symmetrical load are applied Introduction The shear force (F) in a beam at any section‚ X‚ is the force transverse to the beam tending cause it to shear across the section. The shear force at any section is taken as positive if the right-hand side tends to slide downwards relative to the left hand portion. The negative force
Premium Force Shear stress Torque
Sohar University Faculty of Engineering Strength of Materials Laboratory Manual MECH2308 Lab experiment # 3 Thick cylinder Introduction: Thick -walled structures are widely used in .a viatiofi‚ chemistry‚ shipbuilding‚ vehicle nuclear and civil engineering and many other practical .and high-technology industries. The failure of the structures caused by elastoplastic buckling has attracted a .lot of attention of the researchers of mechanics and mechanical designers‚ for
Premium Mechanics Experiment Continuum mechanics
TOPIC: Spring Mass Oscillator OBJECTIVE: To determine the spring constant (K)‚ using mass system. APPARATUS: STEEL RULE SPRING STOP WATCH TAPE MEASURE SLOTTED MASS THEORY: In classical mechanics‚ a harmonic oscillator is a system which ‚ when displaced from its equilibrium position‚ experience a restoring force‚ F‚ proportional to the displacement‚ X‚ according to Hooke’s Law; F = – KX = mα …………………………………. Where‚
Free Force Mass Elasticity
Lab report SHEAR FORCE & BENDING MOMENT Bachelor (Hons) of Civil Engineering Course: Structures l (ECS3213) Lecturer: Ir Pan Submission date: 07-11-2013 Group 8: Members No. Name Student ID 1 Diallo Mamadou Aliou SCM-014804 2 Balmeiiz Abilkhaiyrova SCM-014742 3 Elmogdad Merghani Mohamed Elhag SCM-017223 4 Omar Mohamed Abdelgawwad SCM- 018031 5 Salah Mohammed Alesaei SCM-015473 6 Ali Abdulrahman Mohammed SCM-008879 7 Kasem Heiazi SCM-017913 Contents A. Introduction: 3 B. Objectives:
Premium Force Beam Shear stress
The Report of Deflections of Beams and Cantilevers Summary: There are four parts in this big experiment‚ including deflection of a cantilever‚ deflection of a simply supported beam‚ the shape of a deflected beam‚ and circular bending. In these four parts‚ a same set of laboratory instrument and apparatus is used‚ concluding a bracket‚ a moveable digital dial test indicator‚ U-section channel‚ moveable knife-edge‚ and three material beams: brass‚ aluminum‚ and steel. The experiment methods‚ and
Premium Beam Theory Cantilever
Bending of a Beam Senior Freshman Engineering Laboratories Lab: 2E4A Coordinator: Asst. Prof. Bidisha Ghosh Demonstrator: Concept A transverse load is applied to a beam. The beam changes its shape and experiences bending moment. Internal stresses (bending stress) develop in the beam. In the bent or curved shape‚ the material on the inside of the curve experiences compression and material on the outside of the curve experiences tension. In pure bending‚ the transverse planes in the material
Premium Beam Bending Elasticity
MEM23061A Test Mechanical Engineering Materials Lab. BEAM BENDING The bending of beams is one of the most important types of stress in engineering. Bending is more likely to be a critical stress than other types of stress - like tension‚ compression etc. In this laboratory‚ we will be determining the Modulus of Elasticity E (also called Young’s Modulus) of the various materials and using Solid Edge to determine the Second Moment of Area for the different cross-sections. [pic] Equations
Premium Beam Elasticity
BEAM DESIGN FORMULAS WITH SHEAR AND MOMENT DIAGRAMS 2005 EDITION ANSI/AF&PA NDS-2005 Approval Date: JANUARY 6‚ 2005 ASD/LRFD N DS ® NATIONAL DESIGN SPECIFICATION® FOR WOOD CONSTRUCTION WITH COMMENTARY AND SUPPLEMENT: DESIGN VALUES FOR WOOD CONSTRUCTION American Forest & Paper Association x w Wood American Wood Council American Wood Council R R 2 2 V Shear V Mmax Moment American Forest & DESIGN AID No. 6 DESIGN Paper Association
Premium Beam Torque Wood
Problem Description: The main purpose of this report is to show how to solve a 3-D finite element model of a cantilever I-shape beam‚ which is subjected to two concentrated loads (P = 1600 lb.) at the flanges of the free end along z axis. In this assignment‚ a convergence study will be used to determine the convergence of the solution with respect to mesh refinement. In addition‚ it will be used to achieve an accurate solution for problems that have sufficiently dense mesh‚ which cannot be solve
Premium Convergence Materials science Yield surface
Bending of a Channel Section Experiment Two: Stiffness Report from laboratory work performed on 12 May 2011 as a part of the unit of study CIVL2201 Structural Mechanics Abstract This report has been written to describe an experiment performed on a channel section examining the stiffness of the beam through two differing types of deformation – curvature and deflection. The aim of the experiment was to determine the value of the flexural rigidity (EI) in two different ways; using the curvature
Premium Beam Mathematics Test method