is the capacitative reactance‚ R is the resistance‚ and ω = 2π f ( f is the linear frequency). Apparatus • PC with DataStudio installed • Science Workshop 750 USB Interface Box • Power Amplifier • Voltage Sensor • AC/DC Electronics Lab Board • LCR meter • Connecting patch cords Experimental Procedure The experimental procedure can be divided into three parts: Part I: Using a Frequency Scan to Determine the Resonance Frequency • The first
Premium Alternating current Inductor Electrical resistance
Example lab report of Synthesis of potassium tris (oxalato) ferrate (III) trihydrate Posted by Nurul Yunaliyana Experiment 5: Synthesis of potassium tris (oxalato) ferrate (III) trihydrate Purpose: to synthesis potassium tris (oxalato) ferrate (III) trihydrate ‚K3 [Fe (C2O4)3].3H2O. Introduction: Ferrous ammonium sulfate‚ Fe(NH4)2(SO4)2.6H2O is dissolved in a slightly acid solution‚ excess oxalic acid‚ H2C2O4‚ is added and the following reaction takes place: Fe(NH4)2(SO4)2.6H2O + H2C3O4
Premium Chemistry Iron Ammonia
Data transmission‚ digital transmission‚ or digital communications is the physical transfer of data (a digital bit stream) over a point-to-point or point-to-multipoint communication channel. Examples of such channels are copper wires‚ optical fibres‚ wireless communication channels‚ and storage media. The data are represented as an electromagnetic signal‚ such as an electrical voltage‚ radiowave‚ microwave‚ or infrared signal. Data representation can be divided into two categories: Digital
Premium Data transmission Modulation Computer network
References: a) http://en.wikipedia.org/wiki/Reynolds_number b) http://www.engineeringtoolbox.com/reynolds-number-d_237.html c) http://www.engineeringtoolbox.com/laminar-transitional-turbulent-flow-d_577.html d) http://www.slashdocs.com/prqt/lab-report-osbourne-reynolds-apparatus.html APPENDIX The Reynolds Apparatus that was used during the experiment.
Premium Fluid dynamics Fluid mechanics Viscosity
The Virtual Lab – ELISA Test Lab: Immunology 09/04/2013 Instructors: Dr. Charlie Wilson Written by: Dipen Patel I. Objective: The purpose of the lab was to learn the procedure of performing an ELISA test to determine whether a particular antibody is present in a patient’s blood sample. ELISA is an abbreviation for “Enzyme-linked Immunosorbent Assay." II. Introduction: The interaction of antigen and antibody outside the body can be used to determine if patient
Premium Antibody Immune system ELISA
Synaptic transmission Objectives: To describe the process of electrical transmission between neurones. To highlight the differences between chemical and electrical transmission. To describe the process of chemical transmission. To explain the electrical events associated with chemical transmission ELECTRICAL TRANSMISSION Direct flow of ions from one neurone to another (direct influence of electric current from one to another) E.g. gap junction Gap junction: directly connects the cytoplasm
Premium Neuron Action potential
ME112 Transmission Dissection Procedure [pic][pic][pic][pic] Remove the bolts from the top Here’s what you will see. Locate Using the punch‚ pound out the (Optional): Pound out the pin and cover of the transmission (they are the selector pin and its collar. cotter pin in the collar. If it falls remove the bar that prevents more only hand tightened). in the transmission‚ don’t worry. than one shift fork being selected. [pic][pic][pic][pic] Unscrew the shift lever (if attached)
Premium Input Output Input/output
I.Purpose The purpose of this lab is to show how potential energy and kinetic energy is shown and transferred using a model rollercoaster. This lab also demonstrates the Law of Conservation of Energy. II.Introduction Potential and Kinetic energy have a very big relationship. The Law of Conservation of Energy states that “Energy cannot be destroyed or created‚ but can be transformed or transferred.” This lab will help demonstrate this law and show the conversion between Kinetic and Potential
Free Energy Potential energy Conservation of energy
McLean 1 Creating Acetylene Gas Introduction The purpose of the lab was to determine the ratio of air to acetylene results in complete combustion of acetylene gas. The balanced chemical equation for this experiment was C2H2(g) + O2(g) --> CO2(g)+ H2O(l). Complete combustion is the reaction of an element or compound with oxygen to produce the most common oxides and energy. Complete combustion occurs when the fuel and oxygen combine in exact proportions to completely burn the fuel
Premium Oxygen Combustion
One of the main learning experiences of this lab is to learn the importance of calibrating a sensor. In most cases‚ a sensor will not have an output that is exactly what you need. An example of this is a strain gage. A stain gage gives back a voltage‚ but with that given voltage a distance can be found. Introduction: In this experiment‚ the QNET-MECHKIT was used. This board has multiple compact sensors that can be used for experiments. For this lab we will be using the strain gage to find the
Premium Metrology Measurement Angle